Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Roger C. Harris x
Clear All Modify Search
Restricted access

Bryan Saunders, Craig Sale, Roger C. Harris and Caroline Sunderland

Purpose:

To investigate the separate and combined effects of sodium bicarbonate and beta-alanine supplementation on repeated sprints during simulated match play performed in hypoxia.

Methods:

Study A: 20 recreationally active participants performed two trials following acute supplementation with either sodium bicarbonate (0.3 g·kg−1BM) or placebo (maltodextrin). Study B: 16 recreationally active participants were supplemented with either a placebo or beta-alanine for 5 weeks (6.4 g·day−1 for 4 weeks, 3.2 g·day−1 for 1 week), and performed one trial before supplementation (with maltodextrin) and two following supplementation (with sodium bicarbonate and maltodextrin). Trials consisted of 3 sets of 5 × 6 s repeated sprints performed during a football specific intermittent treadmill protocol performed in hypoxia (15.5% O2). Mean (MPO) and peak (PPO) power output were recorded as the performance measures.

Results:

Study A: Overall MPO was lower with sodium bicarbonate than placebo (p = .02, 539.4 ± 84.5 vs. 554.0 ± 84.6 W), although there was no effect across sets (all p > .05). Study B: There was no effect of beta-alanine, or cosupplementation with sodium bicarbonate, on either parameter, although there was a trend toward higher MPO with sodium bicarbonate (p = .07).

Conclusions:

The effect of sodium bicarbonate on repeated sprints was equivocal, although there was no effect of beta-alanine or cosupplementation with sodium bicarbonate. Individual variation may have contributed to differences in results with sodium bicarbonate, although the lack of an effect with beta-alanine suggests this type of exercise may not be influenced by increased buffering capacity.

Restricted access

Bryan Saunders, Craig Sale, Roger C. Harris and Caroline Sunderland

Purpose:

To determine whether gastrointestinal (GI) distress affects the ergogenicity of sodium bicarbonate and whether the degree of alkalemia or other metabolic responses is different between individuals who improve exercise capacity and those who do not.

Methods:

Twenty-one men completed 2 cycling-capacity tests at 110% of maximum power output. Participants were supplemented with 0.3 g/kg body mass of either placebo (maltodextrin) or sodium bicarbonate (SB). Blood pH, bicarbonate, base excess, and lactate were determined at baseline, preexercise, immediately postexercise, and 5 min postexercise.

Results:

SB supplementation did not significantly increase total work done (TWD; P = .16, 46.8 · 9.1 vs 45.6 · 8.4 kJ, d = 0.14), although magnitude-based inferences suggested a 63% likelihood of a positive effect. When data were analyzed without 4 participants who experienced GI discomfort, TWD (P = .01) was significantly improved with SB. Immediately postexercise blood lactate was higher in SB for the individuals who improved but not for those who did not. There were also differences in the preexercise-to-postexercise change in blood pH, bicarbonate, and base excess between individuals who improved and those who did not.

Conclusions:

SB improved high-intensity-cycling capacity but only with the exclusion of participants experiencing GI discomfort. Differences in blood responses suggest that SB may not be beneficial to all individuals. Magnitude-based inferences suggested that the exercise effects are unlikely to be negative; therefore, individuals should determine whether they respond well to SB supplementation before competition.

Full access

Ruth M. Hobson, Roger C. Harris, Dan Martin, Perry Smith, Ben Macklin, Bruno Gualano and Craig Sale

Purpose:

To examine the effect of beta-alanine only and beta-alanine with sodium bicarbonate supplementation on 2,000-m rowing performance.

Methods:

Twenty well-trained rowers (age 23 ± 4 y; height 1.85 ± 0.08 m; body mass 82.5 ± 8.9 kg) were assigned to either a placebo or beta-alanine (6.4 g·d−1 for 4 weeks) group. A 2,000-m rowing time trial (TT) was performed before supplementation (Baseline) and after 28 and 30 days of supplementation. The post supplementation trials involved supplementation with either maltodextrin or sodium bicarbonate in a double-blind, crossover design, creating four study conditions (placebo with maltodextrin; placebo with sodium bicarbonate; beta-alanine with maltodextrin; beta-alanine with sodium bicarbonate). Blood lactate, pH, bicarbonate, and base excess were measured pre-TT, immediately post-TT and at TT+5 min. Performance data were analyzed using magnitude based inferences.

Results:

Beta-alanine supplementation was very likely to be beneficial to 2,000-m rowing performance (6.4 ± 8.1 s effect compared with placebo), with the effect of sodium bicarbonate having a likely benefit (3.2 ± 8.8 s). There was a small (1.1 ± 5.6 s) but possibly beneficial additional effect when combining chronic beta-alanine supplementation with acute sodium bicarbonate supplementation compared with chronic beta-alanine supplementation alone. Sodium bicarbonate ingestion led to increases in plasma pH, base excess, bicarbonate, and lactate concentrations.

Conclusions:

Both chronic beta-alanine and acute sodium bicarbonate supplementation alone had positive effects on 2,000-m rowing performance. The addition of acute sodium bicarbonate to chronic beta-alanine supplementation may further enhance rowing performance.

Restricted access

Ruth M. Hobson, Roger C. Harris, Dan Martin, Perry Smith, Ben Macklin, Kirsty J. Elliott-Sale and Craig Sale

The ability to buffer H+ could be vital to exercise performance, as high concentrations of H+ contribute to the development of fatigue.

Purpose:

The authors examined the effect of sodium bicarbonate (SB) supplementation on 2000-m rowing-ergometer performance.

Methods:

Twenty male rowers (age 23 ± 4 y, height 1.85 ± 0.08 m, mass 82.5 ± 8.9 kg, 2000-m personal-best time 409 ± 16 s) completed two 2000-m rowing-ergometer time trials, separated by 48 h. Participants were supplemented before exercise with 0.3 g/kg body mass of SB or a placebo (maltodextrin; PLA). The trials were conducted using a double-blinded, randomized, counterbalanced crossover study design. Time to complete the 2000-m and time taken for each 500-m split were recorded. Blood lactate, bicarbonate, pH, and base excess were determined preexercise, immediately postexercise, and 5 min postexercise. Performance data were analyzed using paired t tests, as well as magnitude-based inferences; hematological data were analyzed using a repeated-measures ANOVA.

Results:

Using paired t tests, there was no benefit of SB over PLA (P = .095). However, using magnitude-based inferences there was a likely beneficial effect of SB compared with PLA (PLA 412.0 ± 15.1 s, SB 410.7 ± 14.9 s). Furthermore, SB was 0.5 ± 1.2 s faster than PLA in the third 500 m (P = .035; possibly beneficial) and 1.1 ± 1.7 s faster in the fourth 500 m (P = .004; very likely beneficial). All hematological data were different between SB and PLA and were different from preexercise to postexercise.

Conclusion:

SB supplementation is likely to be beneficial to the performance of those competing in 2000-m rowing events, particularly in the second half of the event.