Search Results

You are looking at 1 - 10 of 10 items for

  • Author: Roger G. Eston x
Clear All Modify Search
Restricted access

Viswanath B. Unnithan and Roger G. Eston

Previous studies have consistently shown that the body mass/relative oxygen cost of submaximal treadmill running is greater in children than in young adults. It has been suggested that the obligatory increased stride frequency in children might be at least partly responsible. This hypothesis was investigated by examining the association between stride frequency and oxygen demand characteristics in 10 aerobically fit prepubescent boys (ages 9-10 yrs) and 10 fit young men (ages 18-25 yrs) while running at fixed submaximal speeds on an electronically driven treadmill. The oxygen demand was higher at all running speeds in the boys’ group. To compensate for a shorter stride length, the boys demonstrated higher stride frequency at all speeds. To determine if the inferior running economy in the boys was partly due to the greater stride frequency, the relative oxygen demand per stride was compared between groups at all speeds. This value was similar in both groups. It is concluded that the apparently greater oxygen demand of running in boys may be due in part to the greater stride frequency required to maintain similar running speeds.

Restricted access

John G. Williams, Roger G. Eston and Clare Stretch

This study examined the ability of 40 children (20 boys and 20 girls), ages 11 to 14 years, to regulate the intensity of their effort using perceived effort ratings during cycling. The Borg Rating of Perceived Exertion 6 to 20 Scale was learned and used as a perceptual frame of reference. Maximal oxygen uptake and power output were predicted from telemetered heart rate data collected during a submaximal graded exercise test. Subjects were then fully familiarized with the RPE scale and attended three consecutive sessions of cycling during which they adjusted the workloads themselves so as to produce effort intensities for scale ratings of 9 (very light), 13 (somewhat hard), and 17 (very hard). Heart rates were sampled during the final half minute of each session and the data were submitted to a mixed factorial analysis of variance. This showed highly significant differences (p<.001) between the three RPE levels but no significant effects for age, gender, or trials. It was concluded that the RPE is readily learned by older children and adolescents and is a potentially useful frame of reference when self-regulating effort intensity during vigorous exercise.

Restricted access

Danielle M. Lambrick, Ann V. Rowlands and Roger G. Eston

This study assessed the nature of the perceived exertion response to treadmill running in 14 healthy 7–8 year-old children, using the Eston-Parfitt (E-P) Ratings of Perceived Exertion (RPE) scale and a marble dropping task. For the E-P scale and the marble dropping task, the relationships between the RPE and work rate were best described as linear (R 2 = .96) and curvilinear (R 2 = .94), respectively. This study further suggests that individual respiratory-metabolic cues (oxygen uptake: O2, heart rate: HR, ventilation: V̇E) may significantly influence the overall RPE to varying degrees in young children. The E-P scale provides an intuitively meaningful and valid means of quantifying the overall perception of exertion in young, healthy children during treadmill running. The marble dropping task is a useful secondary measure of perceived exertion, which provides further insight into the nature of the perceived exertion response to exercise in young children.

Restricted access

Ashleigh E. Smith, Roger G. Eston, Belinda Norton and Gaynor Parfitt

Peak oxygen uptake (V̇O2peak) is reliably predicted in young and middle-aged adults using a submaximal perceptually-regulated exercise test (PRET). It is unknown whether older adults can use a PRET to accurately predict V̇O2peak. In this study, the validity of a treadmill-based PRET to predict V̇O2peak was assessed in 24 participants (65.2 ± 3.9 years, 11 males). The PRET required a change in speed or incline corresponding to ratings of perceived exertion (RPE) 9, 11, 13, and 15. Extrapolation of submaximal V̇O2 from the PRET to RPE endpoints 19 and 20 and age-predicted HRmax were compared with measured V̇O2peak. The V̇O2 extrapolated to both RPE19 and 20 over-predicted V̇O2peak (p < .001). However, extrapolating V̇O2 to age-predicted HRmax accurately predicted V̇O2peak (r = .84). Results indicate older adults can use a PRET to predict V̇O2peak by extrapolating V̇O2 from submaximal intensities to an age-predicted HRmax.

Restricted access

Roger G. Eston, Gaynor Parfitt, Laura Campbell and Kevin L. Lamb

The purpose of this study was to assess whether young children could reliability regulate exercise intensity production after several practice trials, without reference to objective feedback measures. The study used a new 10-point scale (Cart and Load Effort Rating [CALER] Scale), which depicts a child on a bicycle, at various stages of exertion, towing a cart in which the load increases progressively. After warm-up, 20 children, aged 7–10 years, performed an intermittent, effort production protocol at CALER 2, 5, and 8 on a cycle ergometer. This was repeated on three further occasions in the next 4 weeks. An increase in PO across trials (44, 65, and 79 W at CALER 2, 5, and 8, respectively) confirmed that the children understood the scale. A Bland and Altman limits of agreement (LoA) analysis and an intraclass correlation analysis (ICC) between trials (T) indicated that reliability improved with practice. Intertrial comparisons of overall reliability from T1 to T2 and from T3 to T4 ranged from 0.76 to 0.97 and an improvement in the overall bias ± 95% limits of agreement from −12 ± 19 W to 0 ± 10 W. This study is the first to apply more than two repeated effort production trials in young children and provides strong evidence that practice improves the reliability of effort perception in children. The data also provide preliminary evidence for the validity of the CALER Scale in children aged 7–10 years.

Restricted access

Ann V. Rowlands, Sarah M. Powell, Roger G. Eston and David K. Ingledew

This study aimed to determine the relationship between bone mineral content, habitual physical activity, and calcium intake in children. Fifty-seven children, aged 8–11 years, wore pedometers for seven days to assess activity. Calcium intake was estimated by a 4-day food diary. Bone mineral content (BMC) and areal density (BMD) were measured at the total proximal femur and femoral neck using dual energy X-ray absorptiometry. Regression analysis was used to assess contributions of physical activity and calcium intake to BMC, residualized for bone area and body mass. Physical activity explained 11.6% of the variance in residualized BMC at the proximal femur and 14.3% at the femoral neck (p < 0.05). Calcium intake added to the variance explained at the proximal femur only (9.8%, p < 0.05). This study provides evidence for an association between BMC and habitual physical activity.

Restricted access

Lobo Louie, Roger G. Eston, Ann. V. Rowlands, Kwok Keung Tong, David K. Ingledew and Frank H. Fu

This study compared the accuracy of heart rate monitoring, pedometry, and uniaxial and triaxial aecelerometry for estimating oxygen consumption during a range of activities in Hong Kong Chinese boys. Twenty-one boys, aged 8–10 years, walked and ran on a treadmill, played catch, played hopscotch, and sat and crayoned. Heart rate, uniaxial and triaxial accelerometry counts, pedometry counts, and scaled oxygen uptake (SVO2) were measured. All measures correlated significantly with VO2 scaled to body mass−0.75 (SVO2). The best predictor of SVO2 was triaxial accelerometry (R2 = 0.89). Correlations in this study were comparable with those in a previous study that used identical methods on 30 UK boys and girls. These results provide further confirmation that triaxial accelerometry provides the best assessment of energy expenditure and that pedometry offers potential for large population studies.

Restricted access

Joel Garrett, Stuart R. Graham, Roger G. Eston, Darren J. Burgess, Lachlan J. Garrett, John Jakeman and Kevin Norton

Purpose: To compare the sensitivity of a submaximal run test (SRT) with a countermovement-jump test (CMJ) to provide an alternative method of measuring neuromuscular fatigue (NMF) in high-performance sport. Methods: A total of 23 professional and semiprofessional Australian rules football players performed an SRT and CMJ test prematch and 48 and 96 h postmatch. Variables from accelerometers recorded during the SRT were player load 1D up (vertical vector), player load 1D side (mediolateral vector), and player load 1D forward (anteroposterior vector). Meaningful difference was examined through magnitude-based inferences (effect size [ES]), with reliability assessed as typical error of measurements expressed as coefficient of variance. Results: A small decrease in CMJ height, ES −0.43 ± 0.39 (likely), was observed 48 h postmatch before returning to baseline 96 h postmatch. This was accompanied by corresponding moderate decreases in the SRT variables player load 1D up, ES −0.60 ± 0.51 (likely), and player load 1D side, ES −0.74 ± 0.57 (likely), 48 h postmatch before also returning to prematch baseline. Conclusion: The results suggest that in the presence of NMF, players use an alternative running profile to produce the same external output (ie, time). This indicates that changes in accelerometer variables during an SRT can be used as an alternative method of measuring NMF in high-performance Australian rules football and provides a flexible option for monitoring changes in the recovery phase postmatch.

Restricted access

Ann V. Rowlands, Roger G. Eston, Lobo Louie, David K. Ingledew, Kwok K. Tong and Frank H. Fu

The aim of this study was to investigate the relationship between habitual physical activity and body fatness in Hong Kong Chinese children. Fifty children aged 8–11 yrs wore a uniaxial accelerometer for 7 days to determine physical activity levels. The sum of seven skinfolds was used to estimate body fatness. Activity counts summed over 1 day (299384 – 140427, mean – SD) were similar to activity counts recorded in previous studies. Activity correlated significantly negatively with sum of skinfolds in boys (r = –.50, N = 24, P < .05) but not girls. In conclusion this study supports a negative relationship between physical activity and body fatness in Hong Kong Chinese boys.

Restricted access

Joel M. Garrett, Stuart R. Graham, Roger G. Eston, Darren J. Burgess, Lachlan J. Garrett, John Jakeman and Kevin Norton

Purpose: To determine the typical variation of variables from a countermovement jump (CMJ) test and a submaximal run test (SRT), along with comparing the sensitivity of each test for the detection of practically important changes within high-performance Australian rules football players. Methods: A total of 23 professional and semiprofessional Australian rules football players performed 6 CMJs and three 8-second 50-m runs every 30 seconds (SRT), 7 days apart. Absolute and trial-to-trial reliability was represented as a coefficient of variation, CV (±90% confidence intervals). Test–retest reliability was examined using the magnitude of the difference (effect size [±90% confidence interval]) from week 1 to week 2. The smallest worthwhile change was calculated as 0.25 × SD. Results: Good reliability (CVs = 6.6%–9.3%) was determined for all variables except eccentric displacement (CV = 12.8%), with no clear changes observed in any variables between week 1 and week 2. All variables from the SRT possessed a CV less than smallest worthwhile change, indicating an ability to detect practically important changes in performance. Only peak velocity from the CMJ test possessed a CV less than smallest worthwhile change, exhibiting a limitation of this test in detecting practically meaningful changes within this environment. Conclusions: The results suggest that while all variables possess acceptable reliability, a SRT might offer to be a more sensitive monitoring tool than a CMJ test within high-performance Australian rules football, due to its greater ability for detecting practically important changes in performance.