Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Ross J. Apparies x
Clear All Modify Search
Restricted access

Bradley D. Hatfield, Thomas W. Spalding, Ross J. Apparies, Amy J. Haufler and D. Laine Santa Maria

Latencies and peak-to-peak amplitudes of pattern-reversal evoked-potential (PREP) components of active and inactive community-dwelling healthy 61- to 77-year-olds were compared with those of active and inactive 18- to 31-year-olds to determine whether long-term physical activity involvement was associated with attenuation of age-related changes in sensory processes. Binocular PREPs were derived for each of 2 check sizes (22 × 15 ft and 41 × 30 ft of visual angle) to provide increasing challenge of spatial resolution. Analyses of the latencies revealed significant effects for age, gender, and check size such that latencies were longer for older than for young participants, men than for women, and small than for larger check sizes. Amplitudes were larger in older adults for the P100-N150 peak-to-peak difference, but physical activity history was not associated with reduction of the observed age-related increases in component latencies and amplitude. As such, physical activity does not appear to attenuate age-related decline in visual sensory processing.

Restricted access

Christopher M. Janelle, Charles H. Hillman, Ross J. Apparies, Nicholas P. Murray, Launi Meili, Elizabeth A. Fallon and Bradley D. Hatfield

The purpose of this study was to examine whether variability in gaze behavior and cortical activation would differentiate expert (n = 12) and nonexpert (n = 13) small-bore rifle shooters. Spectral-activity and eye-movement data were collected concurrently during the course of a regulation indoor sequence of 40 shots from the standing position. Experts exhibited significantly superior shooting performance, as well as a significantly longer quiet eye period preceding shot execution than did nonexperts. Additionally, expertise interacted with hemispheric activation levels: Experts demonstrated a significant increase in left-hemisphere alpha and beta power, accompanied by a reduction in right-hemisphere alpha and beta power, during the preparatory period just prior to the shot. Nonexperts exhibited similar hemispheric asymmetry, but to a lesser extent than did experts. Findings suggest systematic expertise-related differences in ocular and cortical activity during the preparatory phase leading up to the trigger pull that reflects more optimal organization of the neural structures needed to achieve high-level performance.