Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Sébastien Duc x
Clear All Modify Search
Restricted access

Sébastien Duc, Vincent Villerius, William Bertucci and Frédéric Grappe


The Ergomo®Pro (EP) is a power meter that measures power output (PO) during outdoor and indoor cycling via 2 optoelectronic sensors located in the bottom bracket axis. The aim of this study was to determine the validity and the reproducibility of the EP compared with the SRM crank set and Powertap hub (PT).


The validity of the EP was tested in the laboratory during 8 submaximal incremental tests (PO: 100 to 400 W), eight 30-min submaximal constant-power tests (PO = 180 W), and 8 sprint tests (PO > 750 W) and in the field during 8 training sessions (time: 181 ± 73 min; PO: ~140 to 150 W). The reproducibility was assessed by calculating the coefficient of PO variation (CV) during the submaximal incremental and constant tests.


The EP provided a significantly higher PO than the SRM and PT during the submaximal incremental test: The mean PO differences were +6.3% ± 2.5% and +11.1% ± 2.1%, respectively. The difference was greater during field training sessions (+12.0% ± 5.7% and +16.5% ± 5.9%) but lower during sprint tests (+1.6% ± 2.5% and +3.2% ± 2.7%). The reproducibility of the EP is lower than those of the SRM and PT (CV = 4.1% ± 1.8%, 1.9% ± 0.4%, and 2.1% ± 0.8%, respectively).


The EP power meter appears less valid and reliable than the SRM and PT systems.

Restricted access

William M. Bertucci, Andrew C. Betik, Sebastien Duc and Frederic Grappe

This study was designed to examine the biomechanical and physiological responses between cycling on the Axiom stationary ergometer (Axiom, Elite, Fontaniva, Italy) vs. field conditions for both uphill and level ground cycling. Nine cyclists performed cycling bouts in the laboratory on an Axiom stationary ergometer and on their personal road bikes in actual road cycling conditions in the field with three pedaling cadences during uphill and level cycling. Gross efficiency and cycling economy were lower (–10%) for the Axiom stationary ergometer compared with the field. The preferred pedaling cadence was higher for the Axiom stationary ergometer conditions compared with the field conditions only for uphill cycling. Our data suggests that simulated cycling using the Axiom stationary ergometer differs from actual cycling in the field. These results should be taken into account notably for improving the precision of the model of cycling performance, and when it is necessary to compare two cycling test conditions (field/laboratory, using different ergometers).