Search Results

You are looking at 1 - 3 of 3 items for

  • Author: S. Jayne Garland x
Clear All Modify Search
Restricted access

S. Jayne Garland, Vicki L. Gray and Svetlana Knorr

Many stroke survivors have residual sensorimotor deficits that impact negatively on balance and quality of life. The purpose of this review is to provide an overview of the impairments in motor control following stroke and the impact of those impairments on muscle activation patterns during postural control in stroke. Motor control impairments following stroke result in force production that is slow, weak and lacking in precision making it difficult to produce a fast rate of force development with sufficient magnitude to be effective for postural responses. Whether postural perturbations require feedback or feedforward responses, there is impairment to the timing, magnitude and sequencing of muscle activation following stroke. The impairment in muscle activation is dependent on the extent of the motor control impairments and strategies used by the individuals following stroke to compensate for the impairments. The central nervous system uses a variety of mechanisms to improve the muscle activation patterns needed for the recovery of postural responses following stroke.

Restricted access

Marc Monsour, Tanya D. Ivanova, Tim D. Wilson and S. Jayne Garland

The purpose of this study was to investigate whether application of bipolar galvanic vestibular stimulation (GVS) would influence the common modulation of motor unit discharge rate in bilateral soleus muscles during quiet standing. Soleus motor unit activity was recorded with fine wire electrodes in each leg. Subjects stood, with eyes closed, on two adjacent force platforms to record postural sway with the head facing straight ahead, turned to right, or turned left. Subjects also swayed voluntarily without GVS to the same position as evoked during the GVS. There was no difference in the common drive to bilateral soleus motoneurons during quiet standing and voluntary sway tasks. Common drive was significantly lower during right cathode GVS with the head straight or turned to the right. These results demonstrate that manipulation of vestibular afferent input influences the common modulation of bilateral soleus motor unit pairs during quiet standing.

Restricted access

Courtney L. Pollock, Michael A. Hunt, Taian M. Vieira, Alessio Gallina, Tanya D. Ivanova and S. Jayne Garland

Background: Ankle plantarflexor muscle impairment contributes to asymmetrical postural control poststroke. Objective: This study examines the relationship of plantarflexor electromyography (EMG) with anterior–posterior center of pressure (APCOP) in people poststroke during progressive challenges to standing balance. Methods: Ten people poststroke and 10 controls participated in this study. Anteriorly directed loads of 1% body mass (BM) were applied to the pelvis every 25–40 s until 5%BM was reached. Cross-correlation values between plantarflexor EMG and APCOP (EMG:APCOP) position and velocity were compared. Results: EMG:APCOP velocity correlations were stronger than EMG:APCOP position across all muscles (p < .01), and correlations were predominately stronger in the nonparetic compared with the paretic leg (p < .05). Increasing challenge to standing balance reduced asymmetry of EMG:APCOP relationships. Conclusions: These data suggest that sensory information reflected in APCOP velocity interacts more strongly with plantarflexor activity in people poststroke and controls than APCOP position. Furthermore, increasing challenge to standing balance reduces postural control asymmetry between legs poststroke.