Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Sakiko Oyama x
Clear All Modify Search
Restricted access

Sakiko Oyama, Araceli Sosa, Rebekah Campbell and Alexandra Correa

Video recordings are used to quantitatively analyze pitchers’ techniques. However, reliability and validity of such analysis is unknown. The purpose of the study was to investigate the reliability and validity of joint and segment angles identified during a pitching motion using video analysis. Thirty high school baseball pitchers participated. The pitching motion was captured using 2 high-speed video cameras and a motion capture system. Two raters reviewed the videos to digitize the body segments to calculate 2-dimensional angles. The corresponding 3-dimensional angles were calculated from the motion capture data. Intrarater reliability, interrater reliability, and validity of the 2-dimensional angles were determined. The intrarater and interrater reliability of the 2-dimensional angles were high for most variables. The trunk contralateral flexion at maximum external rotation was the only variable with high validity. Trunk contralateral flexion at ball release, trunk forward flexion at foot contact and ball release, shoulder elevation angle at foot contact, and maximum shoulder external rotation had moderate validity. Two-dimensional angles at the shoulder, elbow, and trunk could be measured with high reliability. However, the angles are not necessarily anatomically correct, and thus use of quantitative video analysis should be limited to angles that can be measured with good validity.

Restricted access

Elizabeth E. Hibberd, Sakiko Oyama, Jeffrey T. Spang, William Prentice and Joseph B. Myers

Context:

Shoulder injuries are common in swimmers because of the demands of the sport. Muscle imbalances frequently exist due to the biomechanics of the sport, which predispose swimmers to injury. To date, an effective shoulder-injury-prevention program for competitive swimmers has not been established.

Objective:

To assess the effectiveness of a 6-wk strengthening and stretching intervention program on improving glenohumeral and scapular muscle strength and scapular kinematics in collegiate swimmers.

Design:

Randomized control trial.

Setting:

University biomechanics research laboratory.

Participants:

Forty-four Division I collegiate swimmers.

Interventions:

The intervention program was completed 3 times per week for 6 wk. The program included strengthening exercises completed using resistance tubing—scapular retraction (Ts), scapular retraction with upward rotation (Ys), scapular retraction with downward rotation (Ws), shoulder flexion, low rows, throwing acceleration and deceleration, scapular punches, shoulder internal rotation at 90° abduction, and external rotation at 90° abduction—and 2 stretching exercises: corner stretch and sleeper stretch.

Main Outcome Measurements:

Scapular kinematics and glenohumeral and scapular muscle strength assessed preintervention and postintervention.

Results:

There were no significant between-groups differences in strength variables at pre/post tests, although shoulder-extension and internal-rotation strength significantly increased in all subjects regardless of group assignment. Scapular kinematic data revealed increased scapular internal rotation, protraction, and elevation in all subjects at posttesting but no significant effect of group on the individual kinematic variables.

Conclusions:

The current strengthening and stretching program was not effective in altering strength and scapular kinematic variables but may serve as a framework for future programs. Adding more stretching exercises, eliminating exercises that overlap with weight-room training and swim training, and timing of implementation may yield a more beneficial program for collegiate swimmers.