Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Sam Coad x
Clear All Modify Search
Restricted access

Sam Coad, Bon Gray and Christopher McLellan

Purpose:

To assess match-to-match variations in salivary immunoglobulin A concentration ([s-IgA]) measured at 36 h postmatch throughout an Australian Football League (AFL) premiership season and to assess the trends between 36-h-postmatch [s-IgA] and match-play exercise workloads throughout the same season.

Methods:

Eighteen elite male AFL athletes (24 ± 4.2 y, 187.0 ± 7.1 cm, 87.0 ± 7.6 kg) were monitored on a weekly basis to determine total match-play exercise workloads and 36-h-postmatch [s-IgA] throughout 16 consecutive matches in an AFL premiership season. Global positioning systems (GPS) with integrated triaxial accelerometers were used to measure exercise workloads (PlayerLoad) during each AFL match. A linear mixed-model analyses was conducted for time-dependent changes in [s-IgA] and player load.

Results:

A significant main effect was found for longitudinal postmatch [s-IgA] data (F 16,240 = 3.78, P < .01) and PlayerLoad data (F 16,66 = 1.98, P = .03). For all matches after and including match 7, a substantial suppression trend in [s-IgA] 36-h-postmatch values was found compared with preseason baseline [s-IgA].

Conclusion:

The current study provides novel data regarding longitudinal trends in 36-h-postmatch [s-IgA] for AFL athletes. Results demonstrate that weekly in-season AFL match-play exercise workloads may result in delayed mucosal immunological recovery beyond 36 h postmatch. The inclusion of individual athlete-monitoring strategies of [s-IgA] may be advantageous in the detection of compromised postmatch mucosal immunological function for AFL athletes.

Restricted access

Sam Coad, Bon Gray, George Wehbe and Christopher McLellan

Purpose:

To examine the response or pre- and postmatch salivary immunoglobulin A concentration ([s-IgA]) to Australian Football League (AFL) match play and investigate the acute and cumulative influence of player workload and postmatch [s-IgA] after repeated participation in AFL match play.

Methods:

Eleven elite AFL athletes (21.8 ± 2.4 y, 186.9 ± 7.9 cm, 87.4 ± 7.5 kg) were monitored throughout 3 matches during the preseason that were separated by 7 d. Saliva samples were collected across each AFL match at 24 h and 1 h prematch and 1, 12, 36, and 60 h postmatch to determine [s-IgA]. Global positioning systems (GPS) with integrated triaxial accelerometers were used to determine total player workload during match play. Hypothesis testing was conducted for time-dependent changes in [s-IgA] and player load using a repeated-measures ANOVA.

Results:

Player load during match 3 (1266 ± 124.6 AU) was significantly (P < .01) greater than in match 1 (1096 ± 115.1 AU) and match 2 (1082 ± 90.4 AU). Across match 3, [s-IgA] was significantly (P < .01) suppressed at 2 postmatch measures (12 and 36 h) compared with prematch measures (24 and 1 h), which coincided with significantly (P < .01) elevated player load.

Conclusion:

The findings indicate that an increase in player load during AFL preseason match play resulted in compromised postmatch mucosal immunological function. Longitudinal assessment of AFL-match player load and mucosal immunological function across the first 60 h of recovery may augment monitoring and preparedness strategies for athletes.

Restricted access

George Wehbe, Tim Gabbett, Dan Dwyer, Christopher McLellan and Sam Coad

Purpose:

To compare a novel sprint test on a cycle ergometer with a countermovement-jump (CMJ) test for monitoring neuromuscular fatigue after Australian rules football match play.

Methods:

Twelve elite under-18 Australian rules football players (mean ± SD age 17.5 ± 0.6 y, stature 184.7 ± 8.8 cm, body mass 75.3 ± 7.8 kg) from an Australian Football League club’s Academy program performed a short sprint test on a cycle ergometer along with a single CMJ test 1 h prematch and 1, 24, and 48 h postmatch. The cycle-ergometer sprint test involved a standardized warm-up, a maximal 6-s sprint, a 1-min active recovery, and a 2nd maximal 6-s sprint, with the highest power output of the 2 sprints recorded as peak power (PP).

Results:

There were small to moderate differences between postmatch changes in cycle-ergometer PP and CMJ PP at 1 (ES = 0.49), 24 (ES = –0.85), and 48 h postmatch (ES = 0.44). There was a substantial reduction in cycle-ergometer PP at 24 h postmatch (ES = –0.40) compared with 1 h prematch.

Conclusions:

The cycle-ergometer sprint test described in this study offers a novel method of neuromuscular-fatigue monitoring in team-sport athletes and specifically quantifies the concentric component of the fatigue-induced decrement of force production in muscle, which may be overlooked by a CMJ test.