Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Sandra Freitas x
Clear All Modify Search
Restricted access

Marcos Duarte and Sandra M.S.F. Freitas

We investigated the speed and accuracy of fast voluntary movements performed by the whole body during standing. Adults stood on a force plate and performed rhythmic postural movements generating fore and back displacements of the center of pressure (shown as online visual feedback). We observed that for the same target distance, movement time increased with the ratio between target distance and target width, as predicted by Fitts’–type relationships. For different target distances, however, the linear regressions had different slopes. Instead, a single linear relation was observed for the effective target width versus mean movement speed. We discuss this finding as a result of the pronounced inherent variability of the postural control system and when such a source of variability is considered, the observed relationship can be explained. The results reveal that the accuracy of fast voluntary postural movements is deteriorated by the variability due to sway during standing.

Restricted access

Geetanjali Gera, Sandra Freitas, Mark Latash, Katherine Monahan, Gregor Schöner and John Scholz

This study investigated the use of motor abundance during the transport and placing of objects that required either precise or minimal orientation to the target. Analyses across repetitions of the structure of joint configuration variance relative to the position and orientation constraints were performed using the Uncontrolled Manifold (UCM) approach. Results indicated that the orientation constraint did not affect stability of the hand’s spatial path. Orientation was weakly stabilized during the late transport phase independent of the orientation constraint, indicating no default synergy stabilizing orientation. Stabilization of orientation for conditions most requiring it for successful insertion of the object was present primarily during the adjustment phase. The results support the hypothesis that a major advantage of a control scheme that utilizes motor abundance is the ability to resolve multiple task constraints simultaneously without undue interference among them.