Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Sara E. Wilson x
Clear All Modify Search
Restricted access

Joseph S. Soltys and Sara E. Wilson

Regulating spinal motion requires proprioceptive feedback. While studies have investigated the sensing of static lumbar postures, few have investigated sensing lumbar movement speed. In this study, proprioceptive contributions to lateral trunk motion were examined during paraspinal muscle vibration. Seventeen healthy subjects performed lateral trunk flexion movements while lying prone with pelvis fixed. A 44.5-Hz vibratory stimulus was applied to the paraspinal muscles at the L3 level. Subjects attempted to match target paces of 9.5, 13.5, and 17.5 deg/s with and without paraspinal muscle vibration. Vibration of the paraspinal musculature was found to result in slower overall lateral flexion. This effect was found to have a greater influence in the difference of directional velocities with vibration applied to the left musculature. These changes reflect the sensitivity of lumbar velocity sense to applied vibration leading to the perception of faster muscle lengthening and ultimately resulting in slower movement velocities. This suggests that muscle spindle organs modulate the ability to sense velocity of motion and are important in the control of dynamic motion of the spine.

Restricted access

Venkata K. Gade and Sara E. Wilson

Proprioception plays an important role in appropriate sensation of spine position, movement, and stability. Previous research has demonstrated that position sense error in the lumbar spine is increased in flexed postures. This study investigated the change in position sense as a function of altered trunk flexion and moment loading independently. Reposition sense of lumbar angle in 17 subjects was assessed. Subjects were trained to assume specified lumbar angles using visual feedback. The ability of the subjects to reproduce this curvature without feedback was then assessed. This procedure was repeated for different torso flexion and moment loading conditions. These measurements demonstrated that position sense error increased significantly with the trunk flexion (40%, p < .05) but did not increase with moment load (p = .13). This increased error with flexion suggests a loss in the ability to appropriately sense and therefore control lumbar posture in flexed tasks. This loss in proprioceptive sense could lead to more variable lifting coordination and a loss in dynamic stability that could increase low back injury risk. This research suggests that it is advisable to avoid work in flexed postures.