Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Seraina Caviezel x
Clear All Modify Search
Restricted access

Sabrina Skorski, Oliver Faude, Seraina Caviezel and Tim Meyer

Purpose:

To analyze the reproducibility of pacing in elite swimmers during competitions and to compare heats and finals within 1 event.

Methods:

Finals and heats of 158 male swimmers (age 22.8 ± 2.9 y) from 29 nations were analyzed in 2 competitions (downloaded from swimrankings.net). Of these, 134 were listed in the world’s top 50 in 2010; the remaining 24 were finalists of the Pan Pacific Games or European Championships. The level of both competitions for the analysis had to be at least national championships (7.7 ± 5.4 wk apart). Standard error of measurement expressed as percentage of the subject’s mean score (CV) with 90% confidence limits (CL) for each 50-m split time and for total times were calculated. In addition, mixed general modeling was used to determine standard deviations between and within swimmers.

Results:

CV for total time in finals ranged between 0.8% and 1.3% (CL 0.6–2.2%). Regarding split times, 200-m freestyle showed a consistent pacing over all split times (CV 0.9–1.6%). During butterfly, backstroke, and 400-m freestyle, CVs were low in the first 3 and 7 sections, respectively (CV 0.9–1.7%), with greater variability in the last section (1.9–2.2%). In breaststroke, values were higher in all sections (CV 1.2–2.3%). Within-subject SDs for changes between laps were between 0.9% and 2.6% in all finals. Split-time variability for finals and heats ranged between 0.9% and 2.5% (CL 0.3–4.9%).

Conclusion:

Pacing profiles are consistent between different competitions. Variability of pacing seems to be a result of the within-subject variation rather than a result of different competitions

Restricted access

Sabrina Skorski, Oliver Faude, Chris R. Abbiss, Seraina Caviezel, Nina Wengert and Tim Meyer

Purpose:

To date, there has been limited research examining the influence of pacing pattern (PP) on middle-distance swimming performance. As such, the purpose of the current study was to examine the influence of PP manipulation on 400-m freestyle swimming performance.

Methods:

15 front-crawl swimmers (5 female, 10 male; age 18 ± 2 y) performed 3 simulated 400-m swimming events. The initial trial was self-selected pacing (PPSS). The following 2 trials were performed in a counterbalanced order and required participants to complete the first 100 m more slowly (PPSLOW: 4.5% ± 2.2%) or quickly (PPFAST: 2.4% ± 1.6%) than the PPSS trial. 50-m split times were recorded during each trial.

Results:

Overall performance time was faster in PPSS (275.0 ± 15.9 s) than in PPFAST (278.5 ± 16.4 s, P = .05) but not significantly different from PPSLOW (277.5 ± 16.2 s, P = .22). However, analysis for practical relevance revealed that pacing manipulation resulted in a “likely” (>88.2%) decrease in performance compared with PPSS.

Conclusion:

Moderate manipulation of the starting speed during simulated 400-m freestyle races seems to affect overall performance. The observed results indicate that PPSS is optimal in most individuals, yet it seems to fail in some swimmers. Future research should focus on the identification of athletes possibly profiting from manipulations.