Search Results

You are looking at 1 - 10 of 43 items for

  • Author: Shona Halson x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Shona L. Halson

An increase in research investigating recovery strategies has occurred alongside the increase in usage of recovery by elite athletes. Because there is inconsistent evidence regarding the benefits of recovery on performance, it is necessary to examine research design to identify possible strategies that enhance performance in different athlete settings. The purpose of this review is to examine available recovery literature specifically related to the time frame between performance assessments to identify considerations for both research design and practical use of recovery techniques.

Restricted access

Shona L. Halson and Michele Lastella

Full access

Shona L. Halson and David T. Martin

Restricted access

Matthew W. Driller and Shona L. Halson

Purpose:

Compression garments have been commonly used in a medical setting as a method to promote blood flow. Increases in blood flow during exercise may aid in the delivery of oxygen to the exercising muscles and, subsequently, enhance performance. The aim of the current study was to investigate the effect of wearing lower body compression garments during a cycling test.

Methods:

Twelve highly trained cyclists (mean ± SD age 30 ± 6 y, mass 75.6 ± 5.8 kg, VO2peak 66.6 ± 3.4 mL · kg−1 · min−1) performed two 30-min cycling bouts on a cycle ergometer in a randomized, crossover design. During exercise, either full-length lower body compression garments (COMP) or above-knee cycling shorts (CON) were worn. Cycling bouts involved 15 min at a fixed workload (70% of VO2max power) followed by a 15-min time trial. Heart rate (HR) and blood lactate (BL) were measured during the fixed-intensity component of the cycling bout to determine the physiological effect of the garments. Calf girth (CG), thigh girth (TG) and perceived soreness (PS) were measured preexercise and postexercise.

Results:

COMP produced a trivial effect on mean power output (ES = .14) compared with CON (mean ± 95% CI 1.3 ±1.0). COMP was also associated with a lower HR during the fixed-workload section of the test (−2.6% ± 2.3%, ES = −.38). There were no differences between groups for BL, CG, TG, and PS.

Conclusion:

Wearing compression garments during cycling may result in trivial performance improvements of ~1% and may enhance oxygen delivery to the exercising muscles.

Open access

Shona L. Halson and David T. Martin

Open access

Jonathon Weakley, Shona L. Halson, and Iñigo Mujika

Context: To understand overtraining syndrome (OTS), it is important to detail the physiological and psychological changes that occur in athletes. Objectives: To systematically establish and detail the physiological and psychological changes that occur as a result of OTS in athletes. Methods: Databases were searched for studies that were (1) original investigations; (2) English, full-text articles; (3) published in peer-reviewed journals; (4) investigations into adult humans and provided (5) objective evidence that detailed changes in performance from prior to the onset of OTS diagnosis and that performance was suppressed for more than 4 weeks and (6) objective evidence of psychological symptoms. Results: Zero studies provided objective evidence of detailed changes in performance from prior to the onset of OTS diagnosis and demonstrated suppressed performance for more than 4 weeks accompanied by changes in psychological symptoms. Conclusions: All studies failed to provide evidence of changes in performance and mood from “healthy” to an overtrained state with evidence of prolonged suppression of performance. While OTS may be observed in the field, little data is available describing how physiological and psychological symptoms manifest. This stems from vague terminology, difficulties in monitoring for prolonged periods of time, and the need for prospective testing. Real-world settings may facilitate the collection of such data, but the ideal testing battery that can easily be conducted on a regular basis does not yet exist. Consequently, it must be concluded that an evidence base of sufficient scientific quality for understanding OTS in athletes is lacking.

Full access

Shona L Halson, Jonathan M. Peake, and John P. Sullivan

Open access

Shona L. Halson, Louise M. Burke, and Jeni Pearce

Domestic and international travel represents a regular challenge to high-performance track-and-field athletes, particularly when associated with the pressure of competition or the need to support specialized training (e.g., altitude or heat adaptation). Jet lag is a challenge for transmeridian travelers, while fatigue and alterations to gastrointestinal comfort are associated with many types of long-haul travel. Planning food and fluid intake that is appropriate to the travel itinerary may help to reduce problems. Resynchronization of the body clock is achieved principally through manipulation of zeitgebers, such as light exposure; more investigation of the effects of melatonin, caffeine, and the timing/composition of meals will allow clearer guidelines for their contribution to be prepared. At the destination, the athlete, the team management, and catering providers each play a role in achieving eating practices that support optimal performance and success in achieving the goals of the trip. Although the athlete is ultimately responsible for his or her nutrition plan, best practice by all parties will include pretrip consideration of risks around the quality, quantity, availability, and hygiene standards of the local food supply and the organization of strategies to deal with general travel nutrition challenges as well as issues that are specific to the area or the special needs of the group. Management of buffet-style eating, destination-appropriate protocols around food/water and personal hygiene, and arrangement of special food needs including access to appropriate nutritional support between the traditional “3 meals a day” schedule should be part of the checklist.

Restricted access

Nathan G. Versey, Shona L. Halson, and Brian T. Dawson

Purpose:

To investigate whether contrast water therapy (CWT) assists acute recovery from high-intensity running and whether a dose-response relationship exists.

Methods:

Ten trained male runners completed 4 trials, each commencing with a 3000-m time trial, followed by 8 × 400-m intervals with 1 min of recovery. Ten minutes postexercise, participants performed 1 of 4 recovery protocols: CWT, by alternating 1 min hot (38°C) and 1 min cold (15°C) for 6 (CWT6), 12 (CWT12), or 18 min (CWT18), or a seated rest control trial. The 3000-m time trial was repeated 2 h later.

Results:

3000-m performance slowed from 632 ± 4 to 647 ± 4 s in control, 631 ± 4 to 642 ± 4 s in CWT6, 633 ± 4 to 648 ± 4 s in CWT12, and 631 ± 4 to 647 ± 4 s in CWT18. Following CWT6, performance (smallest worthwhile change of 0.3%) was substantially faster than control (87% probability, 0.8 ± 0.8% mean ± 90% confidence limit), however, there was no effect for CWT12 (34%, 0.0 ± 1.0%) or CWT18 (34%, –0.1 ± 0.8%). There were no substantial differences between conditions in exercise heart rates, or postexercise calf and thigh girths. Algometer thigh pain threshold during CWT12 was higher at all time points compared with control. Subjective measures of thermal sensation and muscle soreness were lower in all CWT conditions at some post-water-immersion time points compared with control; however, there were no consistent differences in whole body fatigue following CWT.

Conclusions:

Contrast water therapy for 6 min assisted acute recovery from high-intensity running; however, CWT duration did not have a dose-response effect on recovery of running performance.