Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Simon Pearson x
Clear All Modify Search
Restricted access

Simon A. Rogers, Chris S. Whatman, Simon N. Pearson and Andrew E. Kilding

Purpose: To examine relationships between methods of lower-limb stiffness and their associations with running economy (RE) and maximal velocity (v max) in middle-distance (MD) runners. Methods: Eleven highly trained male MD runners performed a series of mechanical and physiological tests to determine maximal overground sprint speed, RE, and V˙O2peak. Achilles tendon stiffness (k T) was estimated using ultrasonography during maximal isometric ankle plantar flexion. Global stiffness qualities were evaluated using a spring-mass model, providing measures of leg (k leg) and vertical stiffness (k vert) during running and jumping, respectively. Results: Very large (r = −.70) and large (r = −.60) negative relationships existed between RE and k T and k vert, during plantar flexion and unilateral jumps, respectively. There were large (r = .63) and extremely large (r = −.92) associations between k vert and k T and k leg during sprinting, respectively. Runners’ v max had large positive associations between k T (r = .52) and k leg (r = .59) during sprinting. Conclusions: In well-trained MD athletes, greater stiffness appears linked to faster and more economical running. Although k T had the strongest relationship with RE, k leg while sprinting and k vert in maximal unilateral jumps may be more practical measures of stiffness. Agreement between global stiffness assessments and k T highlights the energy contribution of the Achilles tendon to running efficiency and velocity. Further research incorporating these assessment tools could help establish more comprehensive mechanical and metabolic athlete profiles and further our understanding of training adaptations, especially stiffness modification, longitudinally.

Restricted access

Gareth N. Sandford, Simon Pearson, Sian V. Allen, Rita M. Malcata, Andrew E. Kilding, Angus Ross and Paul B. Laursen

Purpose: To assess the longitudinal evolution of tactical behaviors used to medal in men’s 800-m Olympic Games (OG) or world-championship (WC) events in the recent competition era (2000–2016). Methods: Thirteen OG and WC events were characterized for 1st- and 2nd-lap splits using available footage from YouTube. Positive pacing strategies were defined as a faster 1st lap. Season’s best 800-m time and world ranking, reflective of an athlete’s “peak condition,” were obtained to determine relationships between adopted tactics and physical condition prior to the championships. Seven championship events provided coverage of all medalists to enable determination of average 100-m speed and sector pacing of medalists. Results: From 2011 onward, 800-m OG and WC medalists showed a faster 1st lap by 2.2 ± 1.1 s (mean, ±90% confidence limits; large difference, very likely), contrasting a possibly faster 2nd lap from 2000 to 2009 (0.5, ±0.4 s; moderate difference). A positive pacing strategy was related to a higher world ranking prior to the championships (r = .94, .84–.98; extremely large, most likely). After 2011, the fastest 100-m sector from 800-m OG and WC medalists was faster than before 2009 by 0.5, ±0.2 m/s (large difference, most likely). Conclusions: A secular change in tactical racing behavior appears evident in 800-m championships; since 2011, medalists have largely run faster 1st laps and have faster 100-m sector-speed requirements. This finding may be pertinent for training, tactical preparation, and talent identification of athletes preparing for 800-m running at OGs and WCs.