Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Stacey Meardon x
Clear All Modify Search
Restricted access

Tiffany Switlick, Thomas W. Kernozek and Stacey Meardon

Context:

A relationship between altered postural control and injury has been reported in sports. Sensorimotor function serves a fundamental role in postural control and is not often studied in runners. Persons who sustain running injury may have altered sensorimotor function contributing to risk of injury or reinjury.

Objectives:

To determine if differences in knee and ankle proprioception or plantar sensation exist between injured and noninjured runners.

Design:

Retrospective case-control study.

Setting:

University campus.

Participants:

Twenty runners with a history of lower-extremity overuse injury and 20 noninjured runners were examined. Injured runners were subcategorized into 2 groups based on site of injury: foot/ankle and knee/hip.

Main Outcome Measures:

Active absolute joint-repositioning error of the ankle at 20° inversion and 10° eversion and the knee at 15° and 40° flexion was assessed using an isokinetic dynamometer. Vibratory threshold at the calcaneus, arch, and great toe was determined for each subject using a handheld electric sensory threshold instrument.

Results:

Runners in the injured-foot/ankle group had increased absolute error during ankle-eversion repositioning (6.55° ± 3.58°) compared with those in the noninjured (4.04° ± 1.78°, P = .01) and the hip/knee (3.63° ± 2.2°, P = .01) groups. Runners in the injured group, as a whole, had greater sensitivity in the arch of the plantar surface (2.94 ± 0.52 V) than noninjured runners (2.38 ± 0.53 V, P = .02).

Conclusions:

Differences in ankle-eversion proprioception between runners with a history of ankle and foot injuries and noninjured runners were observed. Runners with a history of injury also displayed an increased vibratory threshold in the arch region compared with noninjured runners. Poor ankle-joint-position sense and increased plantar sensitivity suggest altered sensorimotor function after injury. These factors may influence underlying postural control and contribute to altered loading responses commonly observed in injured runners.

Restricted access

Ross H. Miller, Stacey A. Meardon, Timothy R. Derrick and Jason C. Gillette

Previous research has proposed that a lack of variability in lower extremity coupling during running is associated with pathology. The purpose of the study was to evaluate lower extremity coupling variability in runners with and without a history of iliotibial band syndrome (ITBS) during an exhaustive run. Sixteen runners ran to voluntary exhaustion on a motorized treadmill while a motion capture system recorded reflective marker locations. Eight runners had a history of ITBS. At the start and end of the run, continuous relative phase (CRP) angles and CRP variability between strides were calculated for key lower extremity kinematic couplings. The ITBS runners demonstrated less CRP variability than controls in several couplings between segments that have been associated with knee pain and ITBS symptoms, including tibia rotation–rearfoot motion and rearfoot motion–thigh ad/abduction, but more variability in knee flexion/extension–foot ad/abduction. The ITBS runners also demonstrated low variability at heel strike in coupling between rearfoot motion–tibia rotation. The results suggest that runners prone to ITBS use abnormal segmental coordination patterns, particular in couplings involving thigh ad/abduction and tibia internal/external rotation. Implications for variability in injury etiology are suggested.

Restricted access

Jason C. Gillette, Catherine A. Stevermer, Stacey A. Meardon, Timothy R. Derrick and Charles V. Schwab

Farm youth commonly perform animal care tasks such as feeding and watering. The purpose of this study was to determine the effects of age, bucket size, loading symmetry, and amount of load on upper body moments during carrying tasks. Fifty-four male and female participants in four age groups (8–10 years, 12–14 years, 15–17 years, and adults, 20–26 years) participated in the study. Conditions included combinations of large or small bucket sizes, unilateral or bilateral loading, and load levels of 10% or 20% of body weight (BW). During bucket carrying, elbow flexion, shoulder flexion, shoulder abduction, shoulder external rotation, L5/S1 extension, L5/S1 lateral bending, and L5/S1 axial rotation moments were estimated using video data. The 8–10 year-old group did not display higher proportional joint moments as compared with adults. Decreasing the load from 20% BW to 10% BW significantly decreased maximum normalized elbow flexion, shoulder flexion, shoulder abduction, shoulder external rotation, L5/S1 lateral bending, and L5/S1 axial rotation moments. Carrying the load bilaterally instead of unilaterally also significantly reduced these six maximum normalized joint moments. In addition, modifying the carrying task by using smaller one-gallon buckets produced significant reductions in maximum L5/S1 lateral bending moments.