Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Stan C.A.M. Gielen x
Clear All Modify Search
Restricted access

Stan C.A.M. Gielen

EMG recordings are frequently used to obtain a better understanding in the coordination of movements. However, EMG activity is made up by the weighted summation of activity of many motor units with different contractile properties. Recent studies have revealed that different motor units contribute to muscle force in different motor tasks. The flexible recruitment of motor units with various contractile properties allows a flexible tuning of muscle properties, but also complicates the interpretation of EMG activity.

Restricted access

Marjan A. Admiraal, Martijn J.M.A.M. Kusters and Stan C.A.M. Gielen

A central problem in motor control relates to the coordination of the arm's many degrees of freedom. This problem concerns the many arm postures (kinematics) that correspond to the same hand position in space and the movement trajectories between begin and end position (dynamics) that result in the same arm postures. The aim of this study was to compare the predictions for arm kinematics by various models on human motor control with experimental data and to study the relation between kinematics and dynamics. Goal-directed arm movements were measured in 3-D space toward far and near targets. The results demonstrate that arm postures for a particular target depend on previous arm postures, contradicting Donders's law. The minimum-work and minimum-torque-change models, on the other hand, predict a much larger effect of initial posture than observed. These data suggest that both kinematics and dynamics affect postures and that their relative contribution might depend on instruction and task complexity.

Restricted access

Mary D. Klein Breteler, Ruud G.J. Meulenbroek and Stan C.A.M. Gielen

In the present study we evaluated the minimum-jerk and the minimum torque-change model at the path, trajectory, and movement-cost levels. To date, most evaluations of these models have mainly been restricted to path comparisons. Assessments of the time courses of realized jerk and torque changes are surprisingly lacking. Moreover, the extent to which the presumed optimized parameters change as a function of the duration and other temporal features of aiming movements has never been investigated, most probably because the models presuppose movement time. In order to till mis gap, we analyzed a subset of the data of an earlier experiment in which 12 participants performed leftward and rightward planar pointing movements. Hand displacements and joint excursions were recorded with a 3D motion-tracking system and subsequently evaluated by means of model-based analyses. The results show that despite a good agreement between observed paths and predicted paths, especially by the minimum torque-change model, the time courses of jerk and torque changes of observed and modeled movements differed considerably. These differences could mainly be attributed to asymmetrical properties of the time functions of slow movements. Variations of movement costs as a function of movement lime and skewness of tangential velocity profiles show that, especially at high movement speed, costs increase exponentially with departures of symmetry. It is concluded that trajectory-formation models have limited explanatory power in situations that require demanding information processing during the homing-in phase of goal-directed movements. However. for slow movements, deviations from the optimal timing profiles require little extra costs in terms of jerk or torque change.

Restricted access

Tom G. Welter, Maarten F. Bobbert, Bauke M. van Bolhuis, Stan C.A.M. Gielen, Leonard A. Rozendaal and Dirkjan H.E.J. Veeger

We have investigated whether differences in EMG activity in mono- and bi-articuiar muscles for concentric and eccentric contractions (van Bolhuis, Gielen, & van Ingen Schenau, 1998) have to be attributed to a specific muscle coordination strategy or whether they are merely a demonstration of adaptations necessary to adjust for muscle contractile properties. Slow, multi-joint arm movements were studied in a horizontal plane with an external force applied at the wrist. Kinematics and electromyography data from 10 subjects were combined with data from a 3-D model of the arm and a Hill-type muscle model Data for both mono- and bi-articular muscles revealed a higher activation in concentric than in eccentric contractions. The model calculations indicated that the measured difference in activation (20%) was much larger than expected based on the force-velocity relationship (predicting changes of ~5%). Although these findings eliminate the force-velocity relationship as the main explanation for changes in EMG, it cannot be ruled out that other muscle contractile properties, such as history dependence of muscle force, determine muscle activation levels in the task that was studied.