Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Steffen Willwacher x
Clear All Modify Search
Restricted access

Erik Schrödter, Gert-Peter Brüggemann and Steffen Willwacher


To describe the stretch-shortening behavior of ankle plantar-flexing muscle–tendon units (MTUs) during the push-off in a sprint start.


Fifty-four male (100-m personal best: 9.58–12.07 s) and 34 female (100-m personal best: 11.05–14.00 s) sprinters were analyzed using an instrumented starting block and 2-dimensional high-speed video imaging. Analysis was performed separately for front and rear legs, while accounting for block obliquities and performance levels.


The results showed clear signs of a dorsiflexion in the upper ankle joint (front block 15.8° ± 7.4°, 95% CI 13.2–18.2°; rear block 8.0° ± 5.7°, 95% CI 6.4–9.7°) preceding plantar flexion. When observed in their natural block settings, the athletes’ block obliquity did not significantly affect push-off characteristics. It seems that the stretch-shortening-cycle-like motion of the soleus MTU has an enhancing influence on push-off force generation.


This study provides the first systematic observation of ankle-joint stretch-shortening behavior for sprinters of a wide range of performance levels. The findings highlight the importance of reactive-type training for the improvement of starting performance. Nonetheless, future studies need to resolve the independent contributions of tendinous and muscle-fascicle structures to overall MTU performance.

Restricted access

Steffen Willwacher, Manuel König, Wolfgang Potthast and Gert-Peter Brüggemann

Longitudinal midsole bending stiffness and elasticity are two critical features in the construction of running shoes. Stiff elastic materials (eg, carbon fiber) can be used to alter the midsole bending behavior. The purpose of this study was to investigate the effects of midsole stiffness and elasticity manipulation on metatarsophalangeal (MTP) joint mechanics during running in 19 male subjects at 3.5 m/s. Midsole bending stiffness and elasticity were modified by means of carbon fiber insoles of varying thickness. Stiffening the shoe structures around the MTP joint caused a shift of the point of force application toward the front edge of the shoe-ground interface. Negative work was significantly reduced for the stiffest shoe condition and at the same time a significant increase of positive work at the MTP joint was found. It seems plausible that the increase in positive work originates from the reutilization of elastic energy that was stored inside the passive elastic structures of the shoe and toe flexing muscle tendon units. Further, an increase in midsole longitudinal bending stiffness seems to alter the working conditions and mechanical power generation capacities of the MTP plantar flexing muscle tendon units by changing ground reaction force leverage and MTP angular velocity.

Restricted access

Steffen Willwacher, Wolfgang Potthast, Markus Konrad and Gert-Peter Brüggemann

The purpose of this study was to investigate the effect of heel construction on ankle joint mechanics during the early stance phase of running. Kinematic and kinetic parameters (ankle joint angles, angular velocities and joint moments, lever arms of ground reaction force, triceps surae muscle tendon unit lengths, and rates of muscle tendon unit length change) were calculated from 19 male subjects running at 3.3 m/s in shoes with different heel constructions. Increasing heel height and posterior wedging amplified initial plantar flexion velocity and range. The potential for a muscle to control the movement of a joint depends upon its ability to produce joint moments. Runners in this study showed decreased external eversion moments and an increase in eversion range. Maximum eversion angles were not significantly affected by shoe conditions. Without considerable tendon prestretch, joint moment generation potentials of triceps surae and deep plantar flexors might be inhibited due to rapid plantar flexion based on the force–velocity relationship. It could be speculated that increasing ankle inversion at heel strike could be a strategy to keep maximum eversion angles inside an adequate range, if joint moment generation potentials of deep plantar flexors are inhibited due to rapid plantar flexion.

Restricted access

Gerda Strutzenberger, Adam Brazil, Timothy Exell, Hans von Lieres und Wilkau, John D. Davies, Steffen Willwacher, Johannes Funken, Ralf Müller, Kai Heinrich, Hermann Schwameder, Wolfgang Potthast and Gareth Irwin

Context: In sprint events, the first 2 steps are used to accelerate the center of mass horizontally and vertically. Amputee athletes cannot actively generate energy with their running-specific prosthesis. It is likely that sprint acceleration mechanics, including step asymmetry, are altered compared with able-bodied athletes. Purpose : To investigate spatiotemporal and kinetic variables of amputee compared with able-bodied sprinters. Methods: Kinematic and kinetic data of the first and second stance were collected from 15 able-bodied and 7 amputee sprinters (2 unilateral transfemoral, 4 unilateral transtibial, and 1 bilateral transtibial) with a motion-capture system (250 Hz) and 2 force plates (1000 Hz). In addition, bilateral asymmetry was quantified and compared between groups. Results: Compared with able-bodied athletes, amputee athletes demonstrated significantly lower performance values for 5- and 10-m times. Step length, step velocity, and step frequency were decreased and contact times increased. Peak horizontal force and relative change of horizontal velocity were decreased in both stances. Peak vertical force and relative change of vertical velocity were lower for the amputee than the able-bodied group during the first stance but significantly higher during the second stance. During the first stance, able-bodied and amputee sprinters displayed a similar orientation of the ground-reaction-force vector, which became more vertically orientated in the amputee group during second stance. Amputee sprinters showed significantly greater asymmetry magnitudes for vertical force kinetics compared with able-bodietd athletes. Conclusion: A running-specific prosthesis does not replicate the function of the biological limb well in the early acceleration phase.