Search Results

You are looking at 1 - 6 of 6 items for

  • Author: Stephanie K. Gaskell x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Applying a Low-FODMAP Dietary Intervention to a Female Ultraendurance Runner With Irritable Bowel Syndrome During a Multistage Ultramarathon

Stephanie K. Gaskell and Ricardo J.S. Costa

Malabsorption of fermentable oligo-, di-, mono-saccharides and polyols (FODMAPs) in response to prolonged exercise may increase incidence of upper and lower gastrointestinal symptoms (GIS), which are known to impair exercise performance. This case study aimed to explore the impact of a low-FODMAP diet on exercise-associated GIS in a female ultraendurance runner diagnosed with irritable bowel syndrome, competing in a 6-day 186.7-km mountainous multistage ultramarathon (MSUM). Irritable bowel syndrome symptom severity score at diagnosis was 410 and following a low-FODMAP diet (3.9 g FODMAPs/day) it reduced to 70. The diet was applied 6 days before (i.e., lead-in diet), and maintained during (5.1 g FODMAPs/day) the MSUM. Nutrition intake was analyzed through dietary analysis software. A validated 100-mm visual analog scale quantified GIS incidence and severity. GIS were modest during the MSUM (overall mean ± SD: bloating 27 ± 5 mm and flatulence 23 ± 8 mm), except severe nausea (67 ± 14 mm) experienced throughout. Total daily energy (11.7 ± 1.6 MJ/day) intake did not meet estimated energy requirements (range: 13.9–17.9 MJ/day). Total daily protein [1.4 ± 0.3 g·kg body weight (BW)−1·day−1], carbohydrate (9.1 ± 1.3 g·kg BW−1·day−1), fat (1.1 ± 0.2 g·kg BW−1·day−1), and water (78.7 ± 6.4 ml·kg BW−1·day−1) intakes satisfied current consensus guidelines, except for carbohydrates. Carbohydrate intake during running failed to meet recommendations (43 ± 9 g/hr). The runner successfully implemented a low-FODMAP diet and completed the MSUM with minimal GIS. However, suboptimal energy and carbohydrate intake occurred, potentially exacerbated by nausea associated with running at altitude.

Restricted access

Hydrogel Carbohydrate-Electrolyte Beverage Does Not Improve Glucose Availability, Substrate Oxidation, Gastrointestinal Symptoms or Exercise Performance, Compared With a Concentration and Nutrient-Matched Placebo

Alan J. McCubbin, Anyi Zhu, Stephanie K. Gaskell, and Ricardo J.S. Costa

The impact of a carbohydrate-electrolyte solution with sodium alginate and pectin for hydrogel formation (CES-HGel), was compared to a standard CES with otherwise matched ingredients (CES-Std), for blood glucose, substrate oxidation, gastrointestinal symptoms (GIS; nausea, belching, bloating, pain, regurgitation, flatulence, urge to defecate, and diarrhea), and exercise performance. Nine trained male endurance runners completed 3 hr of steady-state running (SS) at 60% V ˙ O 2 max , consuming 90 g/hr of carbohydrate from CES-HGel or CES-Std (53 g/hr maltodextrin, 37 g/hr fructose, 16% w/v solution) in a randomized crossover design, followed by an incremental time to exhaustion (TTE) test. Blood glucose and substrate oxidation were measured every 30 min during SS and oxidation throughout TTE. Breath hydrogen (H2) was measured every 30 min during exercise and every 15 min for 2 hr postexercise. GIS were recorded every 15 min throughout SS, immediately after and every 15-min post-TTE. No differences in blood glucose (incremental area under the curve [mean ± SD]: CES-HGel 1,100 ± 96 mmol·L−1·150 min−1 and CES-Std 1,076 ± 58 mmol·L−1·150 min−1; p = .266) were observed during SS. There were no differences in substrate oxidation during SS (carbohydrate: p = .650; fat: p = .765) or TTE (carbohydrate: p = .466; fat: p = .633) and no effect of trial on GIS incidence (100% in both trials) or severity (summative rating score: CES-HGel 29.1 ± 32.6 and CES-Std 34.8 ± 34.8; p = .262). Breath hydrogen was not different between trials (p = .347), nor was TTE performance (CES-HGel 722 ± 182 s and CES-Std: 756 ± 187 s; p = .08). In conclusion, sodium alginate and pectin added to a CES consumed during endurance running does not alter the blood glucose responses, carbohydrate malabsorption, substrate oxidation, GIS, or TTE beyond those of a CES with otherwise matched ingredients.

Restricted access

Test–Retest Reliability of a Modified Visual Analog Scale Assessment Tool for Determining Incidence and Severity of Gastrointestinal Symptoms in Response to Exercise Stress

Stephanie K. Gaskell, Rhiannon M.J. Snipe, and Ricardo J.S. Costa

Considering the recent growth of exercise gastroenterology research focusing on exercise-induced gastrointestinal syndrome mechanisms, response magnitude, prevention and management strategies, the standardized assessment of gastrointestinal symptoms (GIS) is warranted. The current methodological study aimed to test the reliability of a modified visual analog scale for assessing GIS during exercise, in response to a variety of exertional-stress scenarios, with and without dietary intervention. Recreational endurance runners (n = 31) performed one of the three exercise protocols, which included: 2-hr running at 70% V ˙ O 2 max in temperate (24.7 °C) ambient conditions, with fluid restriction; 2-hr running at 60% V ˙ O 2 max in hot (35.1 °C) ambient conditions, while consuming chilled water immediately before and every 15 min during exercise; and 2-hr running at 60% V ˙ O 2 max in temperate (23.0 °C) ambient conditions, while consuming 30 g/20 min carbohydrate (2∶1 glucose∶fructose, 10% temperate w/v), followed by a 1-hr distance test. GIS was monitored pre-exercise, periodically during exercise, and immediately postexercise. After wash out, participants were retested in mirrored conditions. No significant differences (p > .05) were identified between test–retest using Wilcoxon signed-rank test for all GIS (specific and categorized), within each exercise protocol and the combined protocols. Strong correlations were observed for gut discomfort, total GIS, upper GIS, and nausea (r s = .566 to r s = .686; p < .001), but not for lower GIS (r s = .204; p = .232). Cohen’s magnitude of difference was minimal for all GIS (specific δ < 0.14 and categorized δ < 0.08). The modified visual analog scale for assessing GIS during exercise appears to be a reliable tool for identifying incidence and severity of GIS in cohort populations and is sensitive enough to detect exertional and intervention differences.

Open access

Assessment of Exercise-Associated Gastrointestinal Perturbations in Research and Practical Settings: Methodological Concerns and Recommendations for Best Practice

Ricardo J.S. Costa, Pascale Young, Samantha K. Gill, Rhiannon M.J. Snipe, Stephanie Gaskell, Isabella Russo, and Louise M. Burke

Strenuous exercise is synonymous with disturbing gastrointestinal integrity and function, subsequently prompting systemic immune responses and exercise-associated gastrointestinal symptoms, a condition established as “exercise-induced gastrointestinal syndrome.” When exercise stress and aligned exacerbation factors (i.e., extrinsic and intrinsic) are of substantial magnitude, these exercise-associated gastrointestinal perturbations can cause performance decrements and health implications of clinical significance. This potentially explains the exponential growth in exploratory, mechanistic, and interventional research in exercise gastroenterology to understand, accurately measure and interpret, and prevent or attenuate the performance debilitating and health consequences of exercise-induced gastrointestinal syndrome. Considering the recent advancement in exercise gastroenterology research, it has been highlighted that published literature in the area is consistently affected by substantial experimental limitations that may affect the accuracy of translating study outcomes into practical application/s and/or design of future research. This perspective methodological review attempts to highlight these concerns and provides guidance to improve the validity, reliability, and robustness of the next generation of exercise gastroenterology research. These methodological concerns include participant screening and description, exertional and exertional heat stress load, dietary control, hydration status, food and fluid provisions, circadian variation, biological sex differences, comprehensive assessment of established markers of exercise-induced gastrointestinal syndrome, validity of gastrointestinal symptoms assessment tool, and data reporting and presentation. Standardized experimental procedures are needed for the accurate interpretation of research findings, avoiding misinterpreted (e.g., pathological relevance of response magnitude) and overstated conclusions (e.g., clinical and practical relevance of intervention research outcomes), which will support more accurate translation into safe practice guidelines.

Open access

Amino Acid-Based Beverage Interventions Ameliorate Exercise-Induced Gastrointestinal Syndrome in Response to Exertional-Heat Stress: The Heat Exertion Amino Acid Technology (HEAAT) Study

Ricardo J.S. Costa, Kayla Henningsen, Stephanie K. Gaskell, Rebekah Alcock, Alice Mika, Christopher Rauch, Samuel N. Cheuvront, Phil Blazy, and Robert Kenefick

The study aimed to determine the effects of two differing amino acid beverage interventions on biomarkers of intestinal epithelial integrity and systemic inflammation in response to an exertional-heat stress challenge. One week after the initial assessment, participants (n = 20) were randomly allocated to complete two exertional-heat stress trials, with at least 1 week washout. Trials included a water control trial (CON), and one of two possible amino acid beverage intervention trials (VS001 or VS006). On VS001 (4.5 g/L) and VS006 (6.4 g/L), participants were asked to consume two 237-ml prefabricated doses daily for 7 days before the exertional-heat stress, and one 237-ml dose immediately before, and every 20 min during 2-hr running at 60% maximal oxygen uptake in 35 °C ambient conditions. A water volume equivalent was provided on CON. Whole blood samples were collected pre-, immediately post-, 1 and 2 hr postexercise, and analyzed for plasma concentrations of cortisol, intestinal fatty acid protein, soluble CD14, and immunoglobulin M (IgM) by ELISA, and systemic inflammatory cytokines by multiplex. Preexercise resting biomarker concentrations for all variables did not significantly differ between trials (p > .05). A lower response magnitude for intestinal fatty acid protein (mean [95% CI]: 249 [60, 437] pg/ml, 900 [464, 1,336] pg/ml), soluble CD14 (−93 [−458, 272] ng/ml, 12 [−174, 197] ng/ml), and IgM (−6.5 [−23.0, 9.9] MMU/ml, −10.4 [−16.2, 4.7] MMU/ml) were observed on VS001 and V006 compared with CON (p < .05), respectively. Systemic inflammatory response profile was lower on VS001, but not VS006, versus CON (p < .05). Total gastrointestinal symptoms did not significantly differ between trials. Amino acid beverages’ consumption (i.e., 4.5–6.4 g/L), twice daily for 7 days, immediately before, and during exertional-heat stress ameliorated intestinal epithelial integrity and systemic inflammatory perturbations associated with exercising in the heat, but without exacerbating gastrointestinal symptoms.

Open access

Sports Dietitians Australia Position Statement: Nutrition for Exercise in Hot Environments

Alan J. McCubbin, Bethanie A. Allanson, Joanne N. Caldwell Odgers, Michelle M. Cort, Ricardo J.S. Costa, Gregory R. Cox, Siobhan T. Crawshay, Ben Desbrow, Eliza G. Freney, Stephanie K. Gaskell, David Hughes, Chris Irwin, Ollie Jay, Benita J. Lalor, Megan L.R. Ross, Gregory Shaw, Julien D. Périard, and Louise M. Burke

It is the position of Sports Dietitians Australia (SDA) that exercise in hot and/or humid environments, or with significant clothing and/or equipment that prevents body heat loss (i.e., exertional heat stress), provides significant challenges to an athlete’s nutritional status, health, and performance. Exertional heat stress, especially when prolonged, can perturb thermoregulatory, cardiovascular, and gastrointestinal systems. Heat acclimation or acclimatization provides beneficial adaptations and should be undertaken where possible. Athletes should aim to begin exercise euhydrated. Furthermore, preexercise hyperhydration may be desirable in some scenarios and can be achieved through acute sodium or glycerol loading protocols. The assessment of fluid balance during exercise, together with gastrointestinal tolerance to fluid intake, and the appropriateness of thirst responses provide valuable information to inform fluid replacement strategies that should be integrated with event fuel requirements. Such strategies should also consider fluid availability and opportunities to drink, to prevent significant under- or overconsumption during exercise. Postexercise beverage choices can be influenced by the required timeframe for return to euhydration and co-ingestion of meals and snacks. Ingested beverage temperature can influence core temperature, with cold/icy beverages of potential use before and during exertional heat stress, while use of menthol can alter thermal sensation. Practical challenges in supporting athletes in teams and traveling for competition require careful planning. Finally, specific athletic population groups have unique nutritional needs in the context of exertional heat stress (i.e., youth, endurance/ultra-endurance athletes, and para-sport athletes), and specific adjustments to nutrition strategies should be made for these population groups.