Purpose: Dietary nitrate supplementation has been reported to improve performance in kayaking and rowing exercise, which mandate significant recruitment of the upper-body musculature. Because the effect of dietary nitrate supplementation on swimming performance is unclear, the purpose of this study was to assess the effect of dietary nitrate supplementation on 100-m and 200-m swimming freestyle time-trial (TT) performance. Methods: In a double-blind, randomized crossover design, 10 moderately trained swimmers underwent 2 separate 3-d supplementation periods, with a daily dose of either 140 mL nitrate-rich (∼800 mg/d nitrate) or nitrate-depleted (PLA) beetroot juice (BRJ). After blood sampling on day 3, the swimmers performed both 200-m and 100-m freestyle swimming TTs, with 30 min recovery between trials. Results: Plasma nitrite concentration was greater after BRJ relative to PLA consumption (432 [203] nmol/L, 111 [56] nmol/L, respectively, P = .001). Systolic blood pressure was lowered after BRJ compared with PLA supplementation (114 [10], 120 [10] mm Hg, respectively P = .001), but time to complete the 200-m (BRJ 152.6 [14.1] s, PLA 152.5 [14.1] s) and 100-m (BRJ 69.5 [7.2] s, PLA 69.4 [7.4] s) freestyle swimming TTs was not different between BRJ and PLA (P > .05). Conclusions: Although 3 d of BRJ supplementation increased plasma nitrite concentration and lowered blood pressure, it did not improve 100-m and 200-m swimming TT performance. These results do not support an ergogenic effect of nitrate supplementation in moderately trained swimmers, at least for 100-m and 200-m freestyle swimming performance.
Search Results
You are looking at 1 - 7 of 7 items for
- Author: Stephen J. Bailey x
- Refine by Access: All Content x
Ozcan Esen, Ceri Nicholas, Mike Morris, and Stephen J. Bailey
Stephen J. Bailey, Anni Vanhatalo, Matthew I. Black, Fred J. DiMenna, and Andrew M. Jones
Purpose:
To assess whether combining prior “priming” exercise with an all-out pacing strategy is more effective at improving oxygen-uptake (V̇O2) kinetics and cycling performance than either intervention administered independently.
Methods:
Nine men completed target-work cycling performance trials using a self-paced or all-out pacing strategy with or without prior severe-intensity (70%Δ) priming exercise. Breath-by-breath pulmonary V̇O2 and cycling power output were measured during all trials.
Results:
Compared with the self-paced unprimed control trial (22 ± 5 s), the V̇O2 mean response time (MRT) was shorter (V̇O2 kinetics were faster) with all-out pacing (17 ± 4 s) and priming (17 ± 3 s), with the lowest V̇O2 MRT observed when all-out pacing and priming were combined (15 ± 4 s) (P < .05). However, total O2 consumed and end-exercise V̇O2 were only higher than the control condition in the primed trials (P < .05). Similarly, cycling performance was improved compared with control (98 ± 11 s) in the self-paced primed (93 ± 8 s) and all-out primed (92 ± 8 s) trials (P < .05) but not the all-out unprimed trial (97 ± 5 s; P > .05).
Conclusions:
These findings suggest that combining an all-out start with severe-intensity priming exercise additively improves V̇O2 MRT but not total O2 consumption and cycling performance since these were improved by a similar magnitude in both primed trials relative to the self-paced unprimed control condition. Therefore, these results support the use of priming exercise as a precompetition intervention to improve oxidative metabolism and performance during short-duration high-intensity cycling exercise, independent of the pacing strategy adopted.
Pablo Jodra, Raúl Domínguez, Antonio J. Sánchez-Oliver, Pablo Veiga-Herreros, and Stephen J. Bailey
Purpose: Dietary supplementation with inorganic nitrate (NO3 −) can enhance high-intensity exercise performance by improving skeletal muscle contractility and metabolism, but the extent to which this might be linked to altered psychophysiological processes is presently unclear. The purpose of this study was to assess the effects of NO3 −-rich beetroot juice (BJ) supplementation on profile of mood states, ratings of perceived exertion (RPE), and performance in a 30-second Wingate cycle test. Methods: In a double-blind, randomized, cross-over study, 15 subjects completed 2 laboratory sessions after ingesting NO3 −-rich or NO3 −-depleted (placebo) BJ. Participants initially completed the profile of mood states questionnaire. Subsequently, participants completed a warm-up followed by a 30-second all-out Wingate cycling test. After the Wingate test, participants immediately indicated the RPE of their leg muscles (RPEmuscular), cardiovascular system (RPEcardio), and general RPE (RPEgeneral). Results: Compared with the placebo condition, supplementation with BJ increased peak power output (W peak) (+4.4%, 11.5 [0.7] vs 11.1 [1.0] W·kg−1; P = .039) and lowered the time taken to reach W peak (7.3 [0.9] vs 8.7 [1.5] s; P = .002) during the Wingate test. The profile of mood states score linked to tension was increased prior to the Wingate test (4.8 [3.0] vs 3.4 [2.4]; P = .040), and RPEmuscular was lowered immediately following the Wingate test (17.7 [1.6] vs 18.3 [1.0]; P = .031), after BJ compared with placebo ingestion. Conclusions: Acute BJ supplementation improved pre-exercise tension, 30-second Wingate test performance, and lowered postexercise RPEmuscular.
George P. Robinson, Sophie C. Killer, Zdravko Stoyanov, Harri Stephens, Luke Read, Lewis J. James, and Stephen J. Bailey
This study investigated whether supplementation with nitrate-rich beetroot juice (BR) can improve high-intensity intermittent running performance in trained males in normoxia and different doses of normobaric hypoxia. Eight endurance-trained males (
Kirsty Brock, Prokopios Antonellis, Matthew I. Black, Fred J. DiMenna, Anni Vanhatalo, Andrew M. Jones, and Stephen J. Bailey
Purpose: To investigate whether oxygen-uptake (
Bruce W. Bailey, Landon S. Deru, William F. Christensen, Andrew J. Stevens, Stephen Tanner Ward, Matthew L. Starr, Ciera L. Bartholomew, and Larry A. Tucker
Background: To evaluate the relationship between sleep and next-day physical activity (PA) under free-living conditions in women. Methods: Sleep and PA were measured objectively for 7 consecutive days by accelerometry in 330 young adult women (aged 17–25 y). A structural equation model was used to evaluate the relationship between the driving factor of sleep (total sleep or morning wake time) and the amount of nonsleep sedentary (SED) and moderate to vigorous physical activity (MVPA) each day. Results: With sleep duration as the driving factor, the estimates of βSED and βMVPA were −0.415 and −0.093, respectively (P ≤ .05). For every hour slept, a 24.9-minute reduction in SED time and a 5.58-minute reduction in MVPA were observed. With wake time as the driving factor, the estimates of βSED and βMVPA were −0.636 and −0.149, respectively. For every wake time that was 1 hour later, a 38.2-minute decrease in SED and a 8.9-minute decrease in MVPA (P ≤ .05) were observed. Conclusions: Women who wake later or who sleep longer tend to get less MVPA throughout the day. Getting up earlier and going to bed earlier may support behaviors that improve PA and lifestyle.
Achraf Ammar, Stephen J. Bailey, Omar Hammouda, Khaled Trabelsi, Nabil Merzigui, Kais El Abed, Tarak Driss, Anita Hökelmann, Fatma Ayadi, Hamdi Chtourou, Adnen Gharbi, and Mouna Turki
Purpose: The effect of playing surface on physical performance during a repeated-sprint ability (RSA) test and the mechanisms for any potential playing-surface-dependent effects on RSA performance are equivocal. The purpose of this study was to investigate the effect of natural grass (NG) and artificial turf (AT) on physical performance, ratings of perceived exertion, feeling scale, and blood biomarkers related to anaerobic contribution (blood lactate [Lac]), muscle damage (creatine kinase and lactate dehydrogenase), inflammation (C-reactive protein), and immune function (neutrophils [NEU], lymphocytes [LYM], and monocytes) in response to an RSA test. Methods: A total of 9 male professional football players from the same regional team completed 2 sessions of RSA testing (6 × 30 s interspersed with a 35-s recovery) on NG and AT in a randomized order. During the RSA test, total (sum of distances) and peak (highest distance covered in a single repetition) distance covered were determined using a measuring tape, and the decrement in sprinting performance from the first to the last repetition was calculated. Before and after the RSA test, ratings of perceived exertion, feeling scale, and Lac, creatine kinase, lactate dehydrogenase, C-reactive protein, NEU, LYM, and monocytes were recorded in both NG and AT conditions. Results: Although physical performance declined during the RSA blocks on both surfaces (P = .001), the distance covered declined more on NG (15%) than on AT (11%; P = .04; effect size [ES] = −0.34; 95% confidence interval [CI], −1.21 to 0.56) with a higher total distance covered (+6% [2%]) on AT (P = .018; ES = 1.15; 95% CI, 0.16 to 2.04). In addition, lower ratings of perceived exertion (P = .04; ES = −0.49; 95% CI, −1.36 to 0.42), Lac, NEU, and LYM (P = .03; ES = −0.80; 95% CI, −1.67 to 0.14; ES = −0.16; 95% CI, −1.03 to 0.72; and ES = −0.94; 95% CI, −1.82 to 0.02, respectively) and more positive feelings (P = .02; ES = 0.81; 95% CI, −0.13 to 1.69) were observed after the RSA test performed on AT than on NG. No differences were observed in the remaining physical and blood markers. Conclusion: These findings suggest that RSA performance is enhanced on AT compared with NG. This effect was accompanied by lower fatigue perception and Lac, NEU, and LYM and a more pleasurable feeling. These observations might have implications for physical performance in intermittent team-sport athletes who train and compete on different playing surfaces.