Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Stephen W. Garland x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Effect of Blood Lactate Sample Site and Test Protocol on Training Zone Prescription in Rowing

Stephen W. Garland and Greg Atkinson


To assess the effect of sample site (earlobe vs toe) and incremental exercise protocol (continuous vs discontinuous) on training zone prescription in rowing.


Twenty-six rowers performed two incremental exercise tests on an ergometer: (1) a five-step discontinuous test with 4-min stages and 30-W increment, with blood samples taken from the earlobe and toe at the start of the 1-min break between steps; (2) a continuous test, with 2-min stages and 30-W increment, with blood samples taken from the right first toe at the end of each stage. Blood was analyzed for lactate concentration.


At a lactate concentration of 2 mmol·L−1, the mean (95% CI) power output was 8.1 (± 15.4) W greater for the continuous protocol, the random error between the methods (1.96 × SD of differences) was ± 58.8 W, and there was no evidence of any relationship between power output and error between methods. At a lactate concentration of 4 mmol·L−1, the mean (95% CI) power output was 24.2 (± 17.0) W greater for the continuous protocol, and the random error was ± 64.8 W. At 4 mmol·L−1, systematic bias between methods increased with high power outputs.


The continuous protocol with toe sampling led to higher power outputs for a given lactate concentration compared with the discontinuous protocol with earlobe sampling. This was partly due to the choice of sample site and largely due to the choice of protocol. This bias, and also random variability, makes direct comparison of these tests inappropriate.

Restricted access

Assessment of an International Breaststroke Swimmer Using a Race Readiness Test

Kevin G. Thompson and Stephen W. Garland

Competitive swimmers routinely undertake a 7 X 200-m incremental step test to evaluate their fitness and readiness to compete.1 An exercise protocol more closely replicating competition swimming speeds may provide further insight into the swimmer’s physiological and technical readiness for competition. This case study reports data over a 3-year period from 11 Race Readiness Tests, which were completed, in addition to the 7 X 200-m test, as an attempt to provide the swimmer and coach with a fuller assessment. For this individual, data provided objective information from which to assess training status and race readiness following a transition from 200-m to 100-m race training. Data also raised a question as to whether a 100-m maximal effort 10 minutes before another one actually enhances performance owing to a priming effect.