Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Steven J. Howard x
Clear All Modify Search
Restricted access

Steven J. Howard, Caylee J. Cook, Rihlat Said-Mohamed, Shane A. Norris and Catherine E. Draper

Background:

An area of growth in physical activity research has involved investigating effects of physical activity on children’s executive functions. Many of these efforts seek to increase the energy expenditure of young children as a healthy and low-cost way to affect physical, health, and cognitive outcomes.

Methods:

We review theory and research from neuroscience and evolutionary biology, which suggest that interventions seeking to increase the energy expenditure of young children must also consider the energetic trade-offs that occur to accommodate changing metabolic costs of brain development.

Results:

According to Life History Theory, and supported by recent evidence, the high relative energy-cost of early brain development requires that other energy-demanding functions of development (ie, physical growth, activity) be curtailed. This is important for interventions seeking to dramatically increase the energy expenditure of young children who have little excess energy available, with potentially negative cognitive consequences. Less energy-demanding physical activities, in contrast, may yield psychosocial and cognitive benefits while not overburdening an underweight child’s already scarce energy supply.

Conclusions:

While further research is required to establish the extent to which increases in energy-demanding physical activities may compromise or displace energy available for brain development, we argue that action cannot await these findings.

Restricted access

Yvonne G. Ellis, Dylan P. Cliff, Steven J. Howard and Anthony D. Okely

Purpose: To examine the acute effects of a reduced sitting day on executive function (EF) and musculoskeletal health in preschoolers. Methods: A sample of 29 children (54% boys; 4–5 y) participated in a randomized cross-over trial. Each child completed 2 protocols, which simulate a day at childcare in random order for 2.5 hours; a typical preschool day (50% sitting) and a reduced preschool day (25% sitting) where most sitting activities were replaced with standing activities. Sitting, standing, and stepping time were objectively assessed using an activPAL accelerometer. EF was evaluated using tablet-based EF assessments (inhibition, working memory, and task shifting). Musculoskeletal health was assessed using a handheld dynamometer and goniometer. Results: Compared with the typical preschool day, the reduced sitting day showed no significant differences for EF scores. Effect sizes for inhibition (d = 0.04), working memory (d = 0.02), and shifting (d = 0.11) were all small. For musculoskeletal health, no significant differences were reported after the reduced preschool day. The effect sizes for the hip extension force, hamstring flexibility, gastrocnemius length, and balancing on 1 leg were all small (d = 0.21, d = 0.25, d = 0.28, and d = 0.28). Conclusions: This study suggests that reducing sitting time is unlikely to result in acute changes in EF and musculoskeletal health among preschoolers.