Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Thomas A. Buckley x
Clear All Modify Search
Restricted access

Jaclyn B. Caccese, Thomas A. Buckley and Thomas W. Kaminski

The Balance Error Scoring System (BESS) is often used for sport-related concussion balance assessment. However, moderate intratester and intertester reliability may cause low initial sensitivity, suggesting that a more objective balance assessment method is needed. The MobileMat BESS was designed for objective BESS scoring, but the outcome measures must be validated with reliable balance measures. Thus, the purpose of this investigation was to compare MobileMat BESS scores to linear and nonlinear measures of balance. Eighty-eight healthy collegiate student-athletes (age: 20.0 ± 1.4 y, height: 177.7 ± 10.7 cm, mass: 74.8 ± 13.7 kg) completed the MobileMat BESS. MobileMat BESS scores were compared with 95% area, sway velocity, approximate entropy, and sample entropy. MobileMat BESS scores were significantly correlated with 95% area for single-leg (r = .332) and tandem firm (r = .474), and double-leg foam (r = .660); and with sway velocity for single-leg (r = .406) and tandem firm (r = .601), and double-leg (r = .575) and single-leg foam (r = .434). MobileMat BESS scores were not correlated with approximate or sample entropy. MobileMat BESS scores were low to moderately correlated with linear measures, suggesting the ability to identify changes in the center of mass–center of pressure relationship, but not higher-order processing associated with nonlinear measures. These results suggest that the MobileMat BESS may be a clinically-useful tool that provides objective linear balance measures.

Restricted access

David R. Howell, Thomas A. Buckley, Brant Berkstresser, Francis Wang and William P. Meehan III

The purpose of this study was to identify the rate of abnormal single-task and dual-task gait performance following concussion compared to uninjured controls using previously established normative reference values. The authors examined athletes with a concussion (n = 54; mean age = 20.3 [1.1] y, 46% female, tested 2.9 [1.5] d postinjury), and healthy controls were tested during their preseason baseline examination (n = 60; mean age = 18.9 [0.7] y, 37% female). Participants completed an instrumented single-/dual-task gait evaluation. Outcome variables included average walking speed, cadence, and step length. A significantly greater number of those with concussion walked with abnormal dual-task gait speed compared with the control group (56% vs 30%, P = .01). After adjusting for potential confounding variables (age, concussion history, symptom severity, and sleep), concussion was associated with lower dual-task gait speed (β = −0.150; 95% confidence interval [CI] = −0.252 to −0.047), cadence (β = −8.179; 95% CI = −14.49 to −1.871), and stride length (β = −0.109; 95% CI = −0.204 to −0.014). Although group analyses indicated that those with a concussion performed worse on single-task and dual-task gait compared with controls, a higher rate of abnormal gait was detected for the concussion group compared with the control group for dual-task gait speed only. Dual-task gait speed, therefore, may be considered as a measure to compare against normative values to detect postconcussion impairments.

Restricted access

Lauren A. Brown, Eric E. Hall, Caroline J. Ketcham, Kirtida Patel, Thomas A. Buckley, David R. Howell and Srikant Vallabhajosula

Context: Sports often involve complex movement patterns, such as turning. Although cognitive load effects on gait patterns are well known, little is known on how it affects biomechanics of turning gait among athletes. Such information could help evaluate how concussion affects turning gait required for daily living and sports. Objective: To determine the effect of a dual task on biomechanics of turning while walking among college athletes. Design: Cross-sectional study. Setting: University laboratory. Participants: Fifty-three participants performed 5 trials of a 20-m walk under single- and dual-task conditions at self-selected speed with a 180° turn at 10-m mark. The cognitive load included subtraction, spelling words backward, or reciting the months backward. Interventions: Not applicable. Main Outcome Measures: Turn duration, turning velocity, number of steps, SD of turn duration and velocity, and coefficient of variation of turn duration and velocity. Results: Participants turned significantly slower (155.99 [3.71] cm/s vs 183.52 [4.17] cm/s; P < .001) and took longer time to complete the turn (2.63 [0.05] s vs 2.33 [0.04] s; P < .001) while dual tasking, albeit taking similar number of steps to complete the turn. Participants also showed more variability in turning time under the dual-task condition (SD of turn duration = 0.39 vs 0.31 s; P = .004). Conclusions: Overall, college athletes turned slower and showed more variability during turning gait while performing a concurrent cognitive dual-task turning compared with single-task turning. The slower velocity increased variability may be representative of specific strategy of turning gait while dual tasking, which may be a result of the split attention to perform the cognitive task. The current study provides descriptive values of absolute and variability turning gait parameters for sports medicine personnel to use while they perform their concussion assessments on their college athletes.

Restricted access

David R. Howell, Jessie R. Oldham, Melissa DiFabio, Srikant Vallabhajosula, Eric E. Hall, Caroline J. Ketcham, William P. Meehan III and Thomas A. Buckley

Gait impairments have been documented following sport-related concussion. Whether preexisting gait pattern differences exist among athletes who participate in different sport classifications, however, remains unclear. Dual-task gait examinations probe the simultaneous performance of everyday tasks (ie, walking and thinking), and can quantify gait performance using inertial sensors. The purpose of this study was to compare the single-task and dual-task gait performance of collision/contact and noncontact athletes. A group of collegiate athletes (n = 265) were tested before their season at 3 institutions (mean age= 19.1 ± 1.1 years). All participants stood still (single-task standing) and walked while simultaneously completing a cognitive test (dual-task gait), and completed walking trials without the cognitive test (single-task gait). Spatial-temporal gait parameters were compared between collision/contact and noncontact athletes using MANCOVAs; cognitive task performance was compared using ANCOVAs. No significant single-task or dual-task gait differences were found between collision/contact and noncontact athletes. Noncontact athletes demonstrated higher cognitive task accuracy during single-task standing (P = .001) and dual-task gait conditions (P = .02) than collision/contact athletes. These data demonstrate the utility of a dual-task gait assessment outside of a laboratory and suggest that preinjury cognitive task performance during dual-tasks may differ between athletes of different sport classifications.