Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Thomas B. Stenqvist x
Clear All Modify Search
Restricted access

Monica Klungland Torstveit, Ida Fahrenholtz, Thomas B. Stenqvist, Øystein Sylta and Anna Melin

Endurance athletes are at increased risk of relative energy deficiency associated with metabolic perturbation and impaired health. We aimed to estimate and compare within-day energy balance in male athletes with suppressed and normal resting metabolic rate (RMR) and explore whether within-day energy deficiency is associated with endocrine markers of energy deficiency. A total of 31 male cyclists, triathletes, and long-distance runners recruited from regional competitive sports clubs were included. The protocol comprised measurements of RMR by ventilated hood and energy intake and energy expenditure to predict RMRratio (measured RMR/predicted RMR), energy availability, 24-hr energy balance and within-day energy balance in 1-hr intervals, assessment of body composition by dual-energy X-ray absorptiometry, and blood plasma analysis. Subjects were categorized as having suppressed (RMRratio < 0.90, n = 20) or normal (RMRratio > 0.90, n = 11) RMR. Despite there being no observed differences in 24-hr energy balance or energy availability between the groups, subjects with suppressed RMR spent more time in an energy deficit exceeding 400 kcal (20.9 [18.8–21.8] hr vs. 10.8 [2.5–16.4], p = .023) and had larger single-hour energy deficits compared with subjects with normal RMR (3,265 ± 1,963 kcal vs. −1,340 ± 2,439, p = .023). Larger single-hour energy deficits were associated with higher cortisol levels (r = −.499, p = .004) and a lower testosterone:cortisol ratio (r = .431, p = .015), but no associations with triiodothyronine or fasting blood glucose were observed. In conclusion, within-day energy deficiency was associated with suppressed RMR and catabolic markers in male endurance athletes.

Restricted access

Helen G. Hanstock, Andrew D. Govus, Thomas B. Stenqvist, Anna K. Melin, Øystein Sylta and Monica K. Torstveit

Intensive training periods may negatively influence immune function, but the immunological consequences of specific high-intensity training (HIT) prescriptions are not well defined.


This study explored whether three different HIT prescriptions influence multiple health-related biomarkers and whether biomarker responses to HIT were associated with upper respiratory illness (URI) risk.


Twenty-five male cyclists and triathletes were randomised to three HIT groups and completed twelve HIT sessions over four weeks. Peak oxygen consumption (V̇O2peak) was determined using an incremental cycling protocol, while resting serum biomarkers (cortisol, testosterone, 25(OH)D and ferritin), salivary immunoglobulin-A (s-IgA) and energy availability (EA) were assessed before and after the training intervention. Participants self-reported upper respiratory symptoms during the intervention and episodes of URI were identified retrospectively.


Fourteen athletes reported URIs, but there were no differences in incidence, duration or severity between groups. Increased risk of URI was associated with higher s-IgA secretion rates (odds ratio=0.90, 90% CI:0.83-0.97). Lower pre-intervention cortisol and higher EA predicted a 4% increase in URI duration. Participants with higher V̇O2peak reported higher total symptom scores (incidence rate ratio=1.07, 90% CI:1.01-1.13).


Although multiple biomarkers were weakly associated with risk of URI, the direction of associations between s-IgA, cortisol, EA and URI risk were inverse to previous observations and physiological rationale. There was a cluster of URIs within the first week of the training intervention, but no samples were collected at this time-point. Future studies should incorporate more frequent sample time-points, especially around the onset of new training regimes, and include athletes with suspected or known nutritional deficiencies.