Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Thomas Cattagni x
Clear All Modify Search
Restricted access

Romuald Lepers, Paul J. Stapley and Thomas Cattagni

Background: Age-related declines in sport performance are characteristic of all endurance and sprinting disciplines. However, it is not known if the mode of locomotion (ie, swimming, cycling or running) influences the age-related decline in sport performance in sprinting and endurance events. Methods: To examine the age-related decline in 3 different modes of locomotion (ie, swimming, cycling, and running) for endurance and sprint events, the world-best performances achieved for men in the age groups 18–39, 40–44, 45–49, 50–54, 55–59, 60–64, 65–69, 70–74, 75–79, and 80–84 y were compared in swimming (1500 and 50 m), cycling (1 h and 200 m), and running (10 and 100 m). Each performance was considered as an average speed (throughout the distance), and the age-related decline in performance was expressed as a percentage of the world record (regardless of age group) for that discipline. Results: The age-related decline in 1-h track cycling is less pronounced than in 1500-m swimming and 10-km running after 60 y. In contrast, the age-related decline was similar among the 3 locomotion modes for the sprinting events. Conclusion: The data show that the maintenance of high performance in cycling persists longer into old age than in running and swimming.

Restricted access

Thomas Cattagni, Vincent Gremeaux and Romuald Lepers

Purpose: To examine the cardiorespiratory, muscular, and skeletal characteristics of an 83-year-old champion female master athlete (called DL in this study) who had set multiple world running records in the 80-to-84-year-old age group. Methods: Measures of maximal oxygen uptake, maximal heart rate, maximal isometric torque for knee extensor muscles, thigh and triceps surae muscle volumes, and bone mineral density (BMD) of the proximal femur region were evaluated. Based on previously published equations, physiological age was determined for maximal oxygen uptake, maximal heart rate, and maximal isometric torque. Muscle volumes for the dominant leg were compared with previously published sex- and age-matched data using z scores. For BMD, T score and z score were calculated. Results: DL had the highest maximal oxygen uptake (42.3 mL·min−1·kg−1) ever observed for a female older than 80 years of age, which gave her a remarkable physiological age (27 y). By contrast, she had a physiological age closer to her biological age for maximal isometric torque (90 y) and maximal heart rate (74 y). The z scores for thigh (0.4) and triceps surae (1.1) muscle volumes revealed that DL’s leg muscles were affected almost as much as her sex- and age-matched peers. The T score (−1.7) for BMD showed that DL had osteopenia but no osteoporosis, and the z score (0.7) showed that DL’s BMD was similar to that of females of the same age. Conclusion: This single case study shows that the remarkable cardiorespiratory fitness coupled with intensive endurance training observed in a female master athlete was not associated with specific preservation of her muscular and skeletal characteristics.

Restricted access

Thomas Cattagni, Clément Billet, Christophe Cornu and Marc Jubeau

Context: Prolonged tendon vibration may induce muscle fatigue, as assessed by a decrease in maximal force production. It remains unknown, however, whether the decrease in muscle strength after prolonged Achilles tendon vibration is related to the vibration frequency. Objective: To assess the maximal capacity of plantar-flexor (PF) neuromuscular function before and after prolonged Achilles tendon vibration at low and high frequencies generated using a portable device. Design: Pre- and posttest intervention with control.Setting: University laboratory. Participants: 10 healthy men age 22.6 ± 4.0 y. Intervention: Each subject participated in 3 experimental sessions that were randomly distributed and separated by 1 wk. During each experimental session, 1 of the following vibration protocols was applied for 30 min: 40-Hz vibration, 100-Hz vibration, or no vibration (control protocol). Main Outcome Measures: Maximal-voluntary-contraction torque, voluntary activation level, twitch torque, maximal electromyographic activity, and maximal M-wave of PF muscles (measured before and after each vibration or control protocol).Results: Statistical analysis exhibited no significant effect of vibration protocol on the measured variables. Conclusions: The current study demonstrates that 30 min of Achilles tendon vibration at a low or high frequency using a portable stimulator did not affect the neuromuscular performance of the PF muscles. These results emphasize the limits of tendon vibration, whatever the frequency applied, for inducing neuromuscular fatigue.