Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Thomas D. O’Brien x
Clear All Modify Search
Restricted access

Thomas D. O’Brien

Children develop lower levels of muscle force, and at slower rates, than adults. While strength training in children is expected to reduce this differential, a synchronous adaptation in the tendon must be achieved to ensure forces continue to be transmitted to the skeleton with efficiency while minimizing the risk of strainrelated tendon injury. We hypothesized that resistance training (RT) would alter tendon mechanical properties in children concomitantly with changes in force production characteristics. Twenty prepubertal children (8.9 ± 0.3 years) were equally divided into control (nontraining) and experimental (training) groups. The training group completed a 10-week RT intervention consisting of 2-3 sets of 8-15 plantar flexion contractions performed twice weekly on a recumbent calf raise machine. Achilles tendon properties (cross-sectional area, elongation, stress, strain, stiffness and Young’s modulus), electromechanical delay (EMD; time between the onset of muscle activity and force), rate of force development (RFD; slope of the force-time curve) and rate of EMG increase (REI; slope of the EMG-time curve) were measured before and after RT. Tendon stiffness and Young’s modulus increased significantly after RT in the experimental group only (~29% and ~25%, respectively); all other tendon properties were not significantly altered, although there were mean decreases in both peak tendon strain and strain at a given force level (14% and 24%, respectively, n.s) which may have implications for tendon injury risk and muscle fiber mechanics. A ~13% decrease in EMD was found after RT for the experimental group which paralleled the increase in tendon stiffness (r = −0.59), however RFD and REI were unchanged. The present data show that the Achilles tendon adapts to RT in prepubertal children and is paralleled by a change in EMD, although the magnitude of this change did not appear to be sufficient to influence RFD. These findings are of potential importance within the context of the efficiency and execution of movement.

Restricted access

Thomas D. O’Brien, Neil D. Reeves, Vasilios Baltzopoulos, David A. Jones and Constantinos N. Maganaris

Restricted access

Devon Long, Raffy Dotan, Brynlynn Pitt, Brandon McKinlay, Thomas D. O’Brien, Craig Tokuno and Bareket Falk


The electromyographic threshold (EMGTh) is thought to reflect increased high-threshold/type-II motor-unit (MU) recruitment and was shown higher in boys than in men. Women differ from men in muscular function.


Establish whether females’ EMGTh and girls–women differences are different than males’.


Nineteen women (22.9 ± 3.3yrs) and 20 girls (10.3 ± 1.1yrs) had surface EMG recorded from the right and left vastus lateralis muscles during ramped cycle-ergometry to exhaustion. EMG root-mean-squares were averaged per pedal revolution. EMGTh was determined as the least residual sum of squares for any two regression-line data divisions, if the trace rose ≥ 3SD above its regression line. EMGTh was expressed as % final power-output (%Pmax) and %VO2pk power (%PVO2pk).


EMGTh was detected in 13 (68%) of women, but only 9 (45%) of girls (p < .005) and tended to be higher in the girls (%Pmax= 88.6 ± 7.0 vs. 83.0 ± 6.9%, p = .080; %PVO2pk= (101.6 ± 17.6 vs. 90.6 ± 7.8%, p = .063). When EMGTh was undetected it was assumed to occur at 100%Pmax or beyond. Consequently, EMGTh values turned significantly higher in girls than in women (94.8 ± 7.4 vs. 88.4 ± 9.9%Pmax, p = .026; and 103.2 ± 11.7 vs. 95.2 ± 9.9%PVO2pk, p = .028).


During progressive exercise, girls appear to rely less on higher-threshold/type-II MUs than do women, suggesting differential muscle activation strategy.