Search Results

You are looking at 1 - 6 of 6 items for

  • Author: Thomas Losnegard x
Clear All Modify Search
Restricted access

Thomas Losnegard and Jostein Hallén

Purpose:

Sprint- (≤1.8 km) and distance-skiing (≥15 km) performance rely heavily on aerobic capacity. However, in sprint skiing, due to the ~20% higher speed, anaerobic capacity contributes significantly. This study aimed to identify the possible anthropometric and physiological differences between elite male sprint and distance skiers.

Methods:

Six sprint and 7 distance international-level cross-country skiers completed testing using the V2 skating technique on a roller-ski treadmill. Measurements included submaximal O2 cost (5°, 3 m/s) and a 1000-m time trial (6°, >3.25 m/s) to assess VO2peak and accumulated oxygen (ΣO2) deficit.

Results:

The groups displayed similar O2 cost during the submaximal load. The sprint skiers had a higher ΣO2 deficit (79.0 ± 11.3 vs 65.7 ± 7.5 mL/kg, P = .03, ES = 1.27) and VO2peak in absolute values (6.6 ± 0.5 vs 6.0 ± 0.5 L/min, P = .04, ES =1.23), while VO2peak relative to body mass was lower than in the distance skiers (76.4 ± 4.4 vs 83.0 ± 3.2 mL · kg−1 · min−1, P = .009, ES = 1.59). The sprint skiers were heavier than the distance skiers (86.6 ± 6.1 vs 71.8 ± 7.2 kg, P = .002, ES = 2.07), taller (186 ± 5 vs 178 ± 7 cm, P = .04, ES = 1.25), and had a higher body-mass index (24.9 ± 0.8 vs 22.5 ± 1.3 kg/m2, P = .003, ES = 2.05).

Conclusion:

The elite male sprint skiers showed different anthropometric and physiological qualities than the distance skiers, with these differences being directly related to body mass.

Full access

Øyvind Skattebo and Thomas Losnegard

Purpose: To investigate variability, predictability, and smallest worthwhile performance enhancement in elite biathlon sprint events. In addition, the effects of race factors on performance were assessed. Methods: Data from 2005 to 2015 including >10,000 and >1000 observations for each sex for all athletes and annual top-10 athletes, respectively, were included. Generalized linear mixed models were constructed based on total race time, skiing time, shooting time, and proportions of targets hit. Within-athlete race-to-race variability was expressed as coefficient of variation of performance times and standard deviation (SD) in proportion units (%) of targets hit. The models were adjusted for random and fixed effects of subject identity, season, event identity, and race factors. Results: The within-athlete variability was independent of sex and performance standard of athletes: 2.5–3.2% for total race time, 1.5–1.8% for skiing time, and 11–15% for shooting times. The SD of the proportion of hits was ∼10% in both shootings combined (meaning ±1 hit in 10 shots). The predictability in total race time was very high to extremely high for all athletes (ICC .78–.84) but trivial for top-10 athletes (ICC .05). Race times during World Championships and Olympics were ∼2–3% faster than in World Cups. Moreover, race time increased by ∼2% per 1000 m of altitude, by ∼5% per 1% of gradient, by 1–2% per 1 m/s of wind speed, and by ∼2–4% on soft vs hard tracks. Conclusions: Researchers and practitioners should focus on strategies that improve biathletes’ performance by at least 0.8–0.9%, corresponding to the smallest worthwhile enhancement (0.3 × within-athlete variability).

Open access

Øyvind Skattebo, Thomas Losnegard and Hans Kristian Stadheim

Purpose: Long-distance cross-country skiers specialize to compete in races >50 km predominantly using double poling (DP). This emphasizes the need for highly developed upper-body endurance capacities and an efficient DP technique. The aim of this study was to investigate potential effects of specialization by comparing physiological capacities and kinematics in DP between long-distance skiers and skiers competing using both techniques (skating/classic) in several competition formats (“all-round skiers”). Methods: Seven male long-distance (32 [6] y, 183 [6] cm, 76 [5] kg) and 6 all-round (25 [3] y, 181 [5] cm, 75 [6] kg) skiers at high international levels conducted submaximal workloads and an incremental test to exhaustion for determination of peak oxygen uptake (VO2peak) and time to exhaustion (TTE) in DP and running. Results: In DP and running maximal tests, TTE showed no difference between groups. However, long-distance skiers had 5–6% lower VO2peak in running (81 [5] vs 85 [3] mL·kg−1·min−1; P = .07) and DP (73 [3] vs 78 [3] mL·kg−1·min−1; P < .01) than all-round skiers. In DP, long-distance skiers displayed lower submaximal O2 cost than all-round skiers (3.8 ± 3.6%; P < .05) without any major differences in cycle times or cyclic patterns of joint angles and center of mass. Lactate concentration over a wide range of speeds (45–85% of VO2peak) did not differ between groups, even though each workload corresponded to a slightly higher percentage of VO2peak for long-distance skiers (effect size: 0.30–0.68). Conclusions: The long-distance skiers displayed lower VO2peak but compensated with lower O2 cost to perform equally with the all-round skiers on a short TTE test in DP. Furthermore, similar submaximal lactate concentration and reduced O2 cost could be beneficial in sustaining high skiing speeds in long-duration competitions.

Restricted access

Thomas Losnegard, Martin Andersen, Matt Spencer and Jostein Hallén

Purpose:

To investigate the effects of an active and a passive recovery protocol on physiological responses and performance between 2 heats in sprint cross-country skiing.

Methods:

Ten elite male skiers (22 ± 3 y, 184 ± 4 cm, 79 ± 7 kg) undertook 2 experimental test sessions that both consisted of 2 heats with 25 min between start of the first and second heats. The heats were conducted as an 800-m time trial (6°, >3.5 m/s, ~205 s) and included measurements of oxygen uptake (VO2) and accumulated oxygen deficit. The active recovery trial involved 2 min standing/walking, 16 min jogging (58% ± 5% of VO2peak), and 3 min standing/walking. The passive recovery trial involved 15 min sitting, 3 min walk/jog (~ 30% of VO2peak), and 3 min standing/walking. Blood lactate concentration and heart rate were monitored throughout the recovery periods.

Results:

The increased 800-m time between heat 1 and heat 2 was trivial after active recovery (effect size [ES] = 0.1, P = .64) and small after passive recovery (ES = 0.4, P = .14). The 1.2% ± 2.1% (mean ± 90% CL) difference between protocols was not significant (ES = 0.3, P = .3). In heat 2, peak and average VO2 was increased after the active recovery protocol.

Conclusions:

Neither passive recovery nor running at ~58% of VO2peak between 2 heats changed performance significantly.

Restricted access

Matt Spencer, Thomas Losnegard, Jostein Hallén and Will G. Hopkins

Analyses of elite competitive performance provide useful information for research and practical applications.

Purpose:

Here the authors analyze performance times of cross-country skiers at international competitions (World Cup, World Championship, and Olympics) in classical and free styles of women’s and men’s distance and sprint events, each with a total of 410–569 athletes competing in 1–44 races at 15–25 venues from seasons 2002 to 2011.

Methods:

A linear mixed model of race times for each event provided estimates of within-athlete race-to-race variability expressed as a coefficient of variation (CV) after adjustment for fixed or random effects of snow conditions, altitude, race length, and competition terrain.

Results:

Within-athlete variability was similar for men and women over various events for all athletes (CV of 1.5–1.8%) and for the annual top-10 athletes (1.1–1.4%). Observed effects of snow conditions and altitude on mean time were substantial (~2%) but mostly unclear, owing to large effects of terrain (CV of 4–10% in top-10 analyses). Predictability of performance was extremely high for all athletes (intraclass correlations of .90–.96) but only trivial to poor for top-10 athletes (men .00–.03, women .03–.35).

Conclusion:

The race-to-race variability of top-ranked skiers is similar to that of other elite endurance athletes. Estimates of the smallest worthwhile performance enhancement (0.3× within-athlete variability) will help researchers and practitioners evaluate strategies affecting performance of elite skiers.

Restricted access

Thomas Losnegard, Håvard Myklebust, Øyvind Skattebo, Hans Kristian Stadheim, Øyvind Sandbakk and Jostein Hallén

Purpose:

In the double-poling (DP) cross-country-skiing technique, propulsive forces are transferred solely through the poles. The aim of the current study was to investigate how pole length influences DP performance, O2 cost, and kinematics during treadmill roller skiing.

Methods:

Nine male competitive cross-country skiers (24 ± 3 y, 180 ± 5 cm, 72 ± 5 kg, VO2max running 76 ± 6 mL · kg–1 · min–1) completed 2 identical test protocols using self-selected (84% ± 1% of body height) and long poles (self-selected + 7.5 cm; 88% ± 1% of body height) in a counterbalanced fashion. Each test protocol included a 5-min warm-up (2.5 m/s; 2.5°) and three 5-min submaximal sessions (3.0, 3.5, and 4.0 m/s; 2.5°) for assessment of O2 cost, followed by a selfpaced 1000-m time trial (~3 min, >5.0 m/s; 2.5°). Temporal patterns and kinematics were assessed using accelerometers and 2D video.

Results:

Long poles reduced 1000-m time (mean ± 90% confidence interval; –1.0% ± 0.7%, P = .054) and submaximal O2 cost (–2.7% ± 1.0%, P = .002) compared with self-selected poles. The center-of-mass (CoM) vertical range of displacement tended to be smaller for long than for self-selected poles (23.3 ± 3.0 vs 24.3 ± 3.0 cm, P = .07). Cycle and reposition time did not differ between pole lengths at any speeds tested, whereas poling time tended to be shorter for self-selected than for long poles at the lower speeds (≤3.5 m/s, P ≤ .10) but not at the higher speeds (≥4.0 m/s, P ≥ .23).

Conclusions:

DP 1000-m time, submaximal O2 cost, and CoM vertical range of displacement were reduced in competitive cross-country skiers using poles 7.5 cm longer than self-selected ones.