Search Results

You are looking at 1 - 10 of 10 items for

  • Author: Thomas Losnegard x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Thomas Losnegard and Jostein Hallén

Purpose:

Sprint- (≤1.8 km) and distance-skiing (≥15 km) performance rely heavily on aerobic capacity. However, in sprint skiing, due to the ~20% higher speed, anaerobic capacity contributes significantly. This study aimed to identify the possible anthropometric and physiological differences between elite male sprint and distance skiers.

Methods:

Six sprint and 7 distance international-level cross-country skiers completed testing using the V2 skating technique on a roller-ski treadmill. Measurements included submaximal O2 cost (5°, 3 m/s) and a 1000-m time trial (6°, >3.25 m/s) to assess VO2peak and accumulated oxygen (ΣO2) deficit.

Results:

The groups displayed similar O2 cost during the submaximal load. The sprint skiers had a higher ΣO2 deficit (79.0 ± 11.3 vs 65.7 ± 7.5 mL/kg, P = .03, ES = 1.27) and VO2peak in absolute values (6.6 ± 0.5 vs 6.0 ± 0.5 L/min, P = .04, ES =1.23), while VO2peak relative to body mass was lower than in the distance skiers (76.4 ± 4.4 vs 83.0 ± 3.2 mL · kg−1 · min−1, P = .009, ES = 1.59). The sprint skiers were heavier than the distance skiers (86.6 ± 6.1 vs 71.8 ± 7.2 kg, P = .002, ES = 2.07), taller (186 ± 5 vs 178 ± 7 cm, P = .04, ES = 1.25), and had a higher body-mass index (24.9 ± 0.8 vs 22.5 ± 1.3 kg/m2, P = .003, ES = 2.05).

Conclusion:

The elite male sprint skiers showed different anthropometric and physiological qualities than the distance skiers, with these differences being directly related to body mass.

Full access

Øyvind Skattebo and Thomas Losnegard

Purpose: To investigate variability, predictability, and smallest worthwhile performance enhancement in elite biathlon sprint events. In addition, the effects of race factors on performance were assessed. Methods: Data from 2005 to 2015 including >10,000 and >1000 observations for each sex for all athletes and annual top-10 athletes, respectively, were included. Generalized linear mixed models were constructed based on total race time, skiing time, shooting time, and proportions of targets hit. Within-athlete race-to-race variability was expressed as coefficient of variation of performance times and standard deviation (SD) in proportion units (%) of targets hit. The models were adjusted for random and fixed effects of subject identity, season, event identity, and race factors. Results: The within-athlete variability was independent of sex and performance standard of athletes: 2.5–3.2% for total race time, 1.5–1.8% for skiing time, and 11–15% for shooting times. The SD of the proportion of hits was ∼10% in both shootings combined (meaning ±1 hit in 10 shots). The predictability in total race time was very high to extremely high for all athletes (ICC .78–.84) but trivial for top-10 athletes (ICC .05). Race times during World Championships and Olympics were ∼2–3% faster than in World Cups. Moreover, race time increased by ∼2% per 1000 m of altitude, by ∼5% per 1% of gradient, by 1–2% per 1 m/s of wind speed, and by ∼2–4% on soft vs hard tracks. Conclusions: Researchers and practitioners should focus on strategies that improve biathletes’ performance by at least 0.8–0.9%, corresponding to the smallest worthwhile enhancement (0.3 × within-athlete variability).

Open access

Øyvind Skattebo, Thomas Losnegard, and Hans Kristian Stadheim

Purpose: Long-distance cross-country skiers specialize to compete in races >50 km predominantly using double poling (DP). This emphasizes the need for highly developed upper-body endurance capacities and an efficient DP technique. The aim of this study was to investigate potential effects of specialization by comparing physiological capacities and kinematics in DP between long-distance skiers and skiers competing using both techniques (skating/classic) in several competition formats (“all-round skiers”). Methods: Seven male long-distance (32 [6] y, 183 [6] cm, 76 [5] kg) and 6 all-round (25 [3] y, 181 [5] cm, 75 [6] kg) skiers at high international levels conducted submaximal workloads and an incremental test to exhaustion for determination of peak oxygen uptake (VO2peak) and time to exhaustion (TTE) in DP and running. Results: In DP and running maximal tests, TTE showed no difference between groups. However, long-distance skiers had 5–6% lower VO2peak in running (81 [5] vs 85 [3] mL·kg−1·min−1; P = .07) and DP (73 [3] vs 78 [3] mL·kg−1·min−1; P < .01) than all-round skiers. In DP, long-distance skiers displayed lower submaximal O2 cost than all-round skiers (3.8 ± 3.6%; P < .05) without any major differences in cycle times or cyclic patterns of joint angles and center of mass. Lactate concentration over a wide range of speeds (45–85% of VO2peak) did not differ between groups, even though each workload corresponded to a slightly higher percentage of VO2peak for long-distance skiers (effect size: 0.30–0.68). Conclusions: The long-distance skiers displayed lower VO2peak but compensated with lower O2 cost to perform equally with the all-round skiers on a short TTE test in DP. Furthermore, similar submaximal lactate concentration and reduced O2 cost could be beneficial in sustaining high skiing speeds in long-duration competitions.

Restricted access

Matt Spencer, Thomas Losnegard, Jostein Hallén, and Will G. Hopkins

Analyses of elite competitive performance provide useful information for research and practical applications.

Purpose:

Here the authors analyze performance times of cross-country skiers at international competitions (World Cup, World Championship, and Olympics) in classical and free styles of women’s and men’s distance and sprint events, each with a total of 410–569 athletes competing in 1–44 races at 15–25 venues from seasons 2002 to 2011.

Methods:

A linear mixed model of race times for each event provided estimates of within-athlete race-to-race variability expressed as a coefficient of variation (CV) after adjustment for fixed or random effects of snow conditions, altitude, race length, and competition terrain.

Results:

Within-athlete variability was similar for men and women over various events for all athletes (CV of 1.5–1.8%) and for the annual top-10 athletes (1.1–1.4%). Observed effects of snow conditions and altitude on mean time were substantial (~2%) but mostly unclear, owing to large effects of terrain (CV of 4–10% in top-10 analyses). Predictability of performance was extremely high for all athletes (intraclass correlations of .90–.96) but only trivial to poor for top-10 athletes (men .00–.03, women .03–.35).

Conclusion:

The race-to-race variability of top-ranked skiers is similar to that of other elite endurance athletes. Estimates of the smallest worthwhile performance enhancement (0.3× within-athlete variability) will help researchers and practitioners evaluate strategies affecting performance of elite skiers.

Restricted access

Thomas Losnegard, Martin Andersen, Matt Spencer, and Jostein Hallén

Purpose:

To investigate the effects of an active and a passive recovery protocol on physiological responses and performance between 2 heats in sprint cross-country skiing.

Methods:

Ten elite male skiers (22 ± 3 y, 184 ± 4 cm, 79 ± 7 kg) undertook 2 experimental test sessions that both consisted of 2 heats with 25 min between start of the first and second heats. The heats were conducted as an 800-m time trial (6°, >3.5 m/s, ~205 s) and included measurements of oxygen uptake (VO2) and accumulated oxygen deficit. The active recovery trial involved 2 min standing/walking, 16 min jogging (58% ± 5% of VO2peak), and 3 min standing/walking. The passive recovery trial involved 15 min sitting, 3 min walk/jog (~ 30% of VO2peak), and 3 min standing/walking. Blood lactate concentration and heart rate were monitored throughout the recovery periods.

Results:

The increased 800-m time between heat 1 and heat 2 was trivial after active recovery (effect size [ES] = 0.1, P = .64) and small after passive recovery (ES = 0.4, P = .14). The 1.2% ± 2.1% (mean ± 90% CL) difference between protocols was not significant (ES = 0.3, P = .3). In heat 2, peak and average VO2 was increased after the active recovery protocol.

Conclusions:

Neither passive recovery nor running at ~58% of VO2peak between 2 heats changed performance significantly.

Restricted access

Even Brøndbo Dahl, Eivind Øygard, Gøran Paulsen, Bjarne Rud, and Thomas Losnegard

Purpose: Preconditioning exercise is a widely used strategy believed to enhance performance later the same day. The authors examined the influence of preconditioning exercises 6 hours prior to a time-to-exhaustion (TTE) test during treadmill running. Methods: Ten male competitive runners (age = 26 [3] y, height = 184 [8] cm, weight = 73 [9] kg, maximum oxygen consumption = 72 [7] mL·kg−1·min−1) did a preconditioning session of running (RUN) or resistance exercise (RES) or no morning exercise (NoEx) in a randomized order, separated by >72 hours. The RUN consisted of 15 minutes of low-intensity running and 4 × 15 seconds at race pace (21–24 km·h−1) on a treadmill; RES involved 5 minutes of low-intensity running and 2 × 3 repetitions of isokinetic 1-leg shallow squats with maximal mobilization. Following a 6-hour break, electrically evoked force (m. vastus medialis), countermovement jump, running economy, and a TTE of approximately 2 minutes were examined. Results: Relative to NoEx, no difference was seen for RUN or RES in TTE (mean ± 95% CI: −1.3% ± 3.4% and −0.5% ± 6.0%) or running economy (0.2% ± 1.6% and 1.9% ± 2.7%; all Ps > .05). Jump height was not different for the RUN condition (1.0% ± 2.7%]) but tended to be higher in RES than in the NoEx condition (1.5% ± 1.6%, P = .07). The electrically evoked force tended to reveal low-frequency fatigue (reduced 20:50-Hz peak force ratio) only after RES compared to NoEx (−4.5% ± 4.6%, P = .06). Conclusion: The RUN or RES 6 hours prior to approximately 2 minutes of TTE running test did not improve performance in competitive runners.

Restricted access

Thomas Losnegard, Håvard Myklebust, Øyvind Skattebo, Hans Kristian Stadheim, Øyvind Sandbakk, and Jostein Hallén

Purpose:

In the double-poling (DP) cross-country-skiing technique, propulsive forces are transferred solely through the poles. The aim of the current study was to investigate how pole length influences DP performance, O2 cost, and kinematics during treadmill roller skiing.

Methods:

Nine male competitive cross-country skiers (24 ± 3 y, 180 ± 5 cm, 72 ± 5 kg, VO2max running 76 ± 6 mL · kg–1 · min–1) completed 2 identical test protocols using self-selected (84% ± 1% of body height) and long poles (self-selected + 7.5 cm; 88% ± 1% of body height) in a counterbalanced fashion. Each test protocol included a 5-min warm-up (2.5 m/s; 2.5°) and three 5-min submaximal sessions (3.0, 3.5, and 4.0 m/s; 2.5°) for assessment of O2 cost, followed by a selfpaced 1000-m time trial (~3 min, >5.0 m/s; 2.5°). Temporal patterns and kinematics were assessed using accelerometers and 2D video.

Results:

Long poles reduced 1000-m time (mean ± 90% confidence interval; –1.0% ± 0.7%, P = .054) and submaximal O2 cost (–2.7% ± 1.0%, P = .002) compared with self-selected poles. The center-of-mass (CoM) vertical range of displacement tended to be smaller for long than for self-selected poles (23.3 ± 3.0 vs 24.3 ± 3.0 cm, P = .07). Cycle and reposition time did not differ between pole lengths at any speeds tested, whereas poling time tended to be shorter for self-selected than for long poles at the lower speeds (≤3.5 m/s, P ≤ .10) but not at the higher speeds (≥4.0 m/s, P ≥ .23).

Conclusions:

DP 1000-m time, submaximal O2 cost, and CoM vertical range of displacement were reduced in competitive cross-country skiers using poles 7.5 cm longer than self-selected ones.

Restricted access

Thomas Losnegard, Sondre Skarli, Joar Hansen, Stian Roterud, Ida S. Svendsen, Bent R. Rønnestad, and Gøran Paulsen

Purpose: Rating of perceived exertion (RPE) is a widely used tool to assess subjective perception of effort during exercise. The authors investigated between-subject variation and effect of exercise mode and sex on Borg RPE (6–20) in relation to heart rate (HR), oxygen uptake (VO2), and capillary blood lactate concentrations. Methods: A total of 160 elite endurance athletes performed a submaximal and maximal test protocol either during cycling (n = 84, 37 women) or running (n = 76, 32 women). The submaximal test consisted of 4 to 7 progressive 5-minute steps within ∼50% to 85% of maximal VO2. For each step, steady-state HR, VO2, and capillary blood lactate concentrations were assessed and RPE reported. An incremental protocol to exhaustion was used to determine maximal VO2 and peak HR to provide relative (%) HR and VO2 values at submaximal work rates. Results: A strong relationship was found between RPE and %HR, %VO2, and capillary blood lactate concentrations (r = .80–.82, all Ps < .05). The between-subject coefficient of variation (SD/mean) for %HR and %VO2 decreased linearly with increased RPE, from ∼10% to 15% at RPE 8 to ∼5% at RPE 17. Compared with cycling, running induced a systematically higher %HR and %VO2 (∼2% and 5%, respectively, P < .05) with these differences being greater at lower intensities (RPE < 13). At the same RPE, women showed a trivial, but significantly higher %HR and %VO2 than men (<1%, P < .05). Conclusions: Among elite endurance athletes, exercise mode influenced RPE at a given %HR and %VO2, with greater differences at lower exercise intensities. Athletes should manage different tools to evaluate training based on intensity and duration of workouts.

Restricted access

Bjarne Rud, Eivind Øygard, Even B. Dahl, Gøran Paulsen, and Thomas Losnegard

Purpose: We tested whether a single session of heavy-load resistance priming conducted in the morning improved double-poling (DP) performance in the afternoon. Methods: Eight national-level male cross-country skiers (mean [SD]: 23 [3] y, 184 [6] cm, 73 [7] kg, maximum oxygen consumption = 69 [6] mL·kg−1·min−1) carried out 2 days of afternoon performance tests. In the morning, 5 hours before tests, subjects were counterbalanced to either a session of 3 × 3 repetitions (approximately 85%–90% 1-repetition maximum) of squat and sitting pullover exercises or no exercise. The performance was evaluated in DP as time to exhaustion (TTE) (approximately 3 min) on a treadmill and 30-m indoor sprints before and after TTE (30-m DP pre/post). Furthermore, submaximal DP oxygen cost, countermovement jump, and isometric knee-extension force during electrical stimulation were conducted. Participants reported perceived readiness on test days. Results: Resistance exercise session versus no exercise did not differ for TTE (approximately 3 min above) (mean ± 95% confidence interval = 3.6% ± 6.0%; P = .29; effect size [ES], Cohen d = 0.27), 30-m DP pre (−0.56% ± 0.80%; P = .21; ES = 0.20), 30-m DP post (−0.18% ± 1.13%; P = .76; ES = 0.03), countermovement jump (−2.0% ± 2.8%; P = .21; ES = 0.12), DP oxygen cost (−0.13% ± 2.04%; P = .91; ES = 0.02), or perceived readiness (P ≥ .11). Electrical stimulation force was not different in contraction or relaxation time but revealed low-frequency fatigue in the afternoon for the resistance exercise session only (−12% [7%]; P = .01; ES = 1.3). Conclusion: A single session of heavy-load, low-volume resistance exercise in the morning did not increase afternoon DP performance of short duration in high-level skiers. However, leg low-frequency fatigue after resistance priming, together with the presence of small positive effects in 2 out of 3 DP tests, may indicate that the preconditioning was too strenuous.

Restricted access

Erik Trøen, Bjarne Rud, Øyvind Karlsson, Camilla Høivik Carlsen, Matthias Gilgien, Gøran Paulsen, Ola Kristoffer Tosterud, and Thomas Losnegard

Purpose: To investigate how self-selected pole length (PL) of ∼84% (PL84%) compared with ∼90% (PL90%) of body height influenced performance during a 700-m time trial with undulating terrain on snow. Methods: Twenty-one cross-country skiers, 7 of whom were women, performed 4 trials at a maximal effort in a counterbalanced fashion with PL84% and PL90% separated by 20-minute breaks between trials. In trials I and II, only double poling was allowed, while in trials III and IV, skiers used self-selected classical subtechniques. Continuous speed, cyclic parameters, and heart rate were collected using microsensors in addition to a post-time-trial rating of perceived exertion (RPE). Results: The 700-m times with only double poling were significantly shorter with PL90% than PL84% (mean ± 95% confidence limits –1.6% ± 1.0%). Segment analyses showed higher speed with PL90% in uphill sections than with PL84% (3.7% ± 2.1%), with the greatest difference found for the female skiers (5.6% ± 2.9%). In contrast, on flat terrain at high skiing speeds, speed was reduced with PL90% compared with PL84% (–1.5% ± 1.4%); this was only significant for the male skiers. During free choice of classical subtechniques, PL did not influence performance in any segments, choice of subtechnique, or cycle rate during the trials. No differences in rating of perceived exertion or heart rate between PLs were found. Conclusions: PL90% improved performance in uphills at low speeds when using double poling but hindered performance on flat terrain and at higher speeds compared with self-selected PLs. Choice of PL should, therefore, be based on racecourse topography, preferred subtechniques, and the skier’s physiological and technical abilities.