Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Thomas M. Best x
Clear All Modify Search
Restricted access

Louise M. Thoma, David C. Flanigan, Ajit M. Chaudhari, Robert A. Siston, Thomas M. Best and Laura C. Schmitt

Context:

Few objective data are available regarding strength and movement patterns in individuals with articular cartilage defects (ACDs) of the knee.

Objectives:

To test the following hypotheses: (1) The involved limb of individuals with ACDs would demonstrate lower peak knee-flexion angle, peak internal knee-extension moment, and peak vertical ground-reaction force (vGRF) than the contralateral limb and healthy controls. (2) On the involved limb of individuals with ACDs, quadriceps femoris strength would positively correlate with peak knee-flexion angle, peak internal knee-extension moment, and peak vGRF.

Design:

Cross-sectional.

Setting:

Biomechanics research laboratory.

Participants:

11 individuals with ACDs in the knee who were eligible for surgical cartilage restoration and 10 healthy controls.

Methods:

Quadriceps femoris strength was quantified as peak isometric knee-extension torque via an isokinetic dynamometer. Sagittal-plane knee kinematics and kinetics were measured during the stance phase of stair ascent with 3-dimensional motion analysis.

Main Outcome Measures:

Quadriceps strength and knee biomechanics during stair ascent were compared between the involved and contralateral limbs of participants with ACD (paired t tests) and with a control group (independent-samples t tests). Pearson correlations evaluated relationships between strength and stair-ascent biomechanics.

Results:

Lower quadriceps strength and peak internal knee-extension moments were observed in the involved limb than in the contralateral limb (P < .01) and the control group (P < .01). For the involved limb of the ACD group, quadriceps femoris strength was strongly correlated (r = .847) with involved-limb peak internal knee-extension moment and inversely correlated (r = −.635) with contralateral peak vGRF. Conclusions: Individuals with ACDs demonstrated deficits in quadriceps femoris strength with associated alterations in movement patterns during stair ascent. The results of this study are not comprehensive; further research is needed to understand the physiological characteristics, activity performance, and movement quality in this population.

Restricted access

David T. Corr, Ray Vanderby Jr. and Thomas M. Best

An existing rheological model of skeletal muscle (Forcinito et al., 1998) was modified with a nonlinear Maxwell fluid element to provide a phenomenological model capable of analyzing the strain-stiffening behavior typically found in passive, and occasionally observed in active, skeletal muscle. This new model describes both active and passive muscular behavior as a combination of the behavior of each model component, without requiring prior knowledge of the force-length or force-velocity characteristics of the muscle.

Restricted access

Elena J. Caruthers, Julie A. Thompson, Ajit M.W. Chaudhari, Laura C. Schmitt, Thomas M. Best, Katherine R. Saul and Robert A. Siston

Sit-to-stand transfer is a common task that is challenging for older adults and others with musculoskeletal impairments. Associated joint torques and muscle activations have been analyzed two-dimensionally, neglecting possible three-dimensional (3D) compensatory movements in those who struggle with sit-to-stand transfer. Furthermore, how muscles accelerate an individual up and off the chair remains unclear; such knowledge could inform rehabilitation strategies. We examined muscle forces, muscleinduced accelerations, and interlimb muscle force differences during sit-to-stand transfer in young, healthy adults. Dynamic simulations were created using a custom 3D musculoskeletal model; static optimization and induced acceleration analysis were used to determine muscle forces and their induced accelerations, respectively. The gluteus maximus generated the largest force (2009.07 ± 277.31 N) and was a main contributor to forward acceleration of the center of mass (COM) (0.62 ± 0.18 m/s2), while the quadriceps opposed it. The soleus was a main contributor to upward (2.56 ± 0.74 m/s2) and forward acceleration of the COM (0.62 ± 0.33 m/s2). Interlimb muscle force differences were observed, demonstrating lower limb symmetry cannot be assumed during this task, even in healthy adults. These findings establish a baseline from which deficits and compensatory strategies in relevant populations (eg, elderly, osteoarthritis) can be identified.