Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Thomas W. Jones x
Clear All Modify Search
Restricted access

Thomas W. Jones, Barry C. Shillabeer and Marco Cardinale

Context: The application of infrared thermography to assess the effects of athletic training is increasing. It is not known if changes in skin temperature (Tsk) as assessed by infrared thermography are affected by the training load or the muscle soreness experienced by the athlete. Purpose : To describe the variations in Tsk in body areas affected by running training and examine any relationships with subjective ratings of muscle soreness. The secondary aim was to assess the feasibility of using infrared thermography for assessing training load in 2 junior male middle-distance athletes. Methods: Data were collected over a 42-d observational period with Tsk of the quadriceps, knees, shins, lateral hamstrings, biceps femoris, and Achilles tendons, and the subjective ratings of muscle soreness were taken each morning prior to any training. All training load was quantified through heart rate, running speed, and distance covered. Changes in Tsk outside the typical error were identified. Relationships between Tsk and subjective ratings of muscle soreness were also examined. Results: Over the 42-d observational period, mean Tsk of the regions of interest was reported outside the typical error on day 31 and day 22 for athletes 1 and 2, respectively. These changes in Tsk did not follow trends similar to those of to training loadings. No significant relationships were observed between Tsk of any regions of interest and muscle soreness. Conclusions: Although Tsk changed outside the typical error throughout the 42-d observational period, these changes were not reflective of training load quantified through cardiovascular strain or subjective ratings of muscle soreness.

Restricted access

Thomas W. Jones, Ian H. Walshe, David L. Hamilton, Glyn Howatson, Mark Russell, Oliver J. Price, Alan St Clair Gibson and Duncan N. French

Purpose:

To compare anabolic signaling responses to differing sequences of concurrent strength and endurance training in a fed state.

Methods:

Eighteen resistance-trained men were randomly assigned to the following experimental conditions: strength training (ST), strength followed by endurance training (ST-END), or endurance followed by strength training (END-ST). Muscle tissue samples were taken from the vastus lateralis before each exercise protocol, on cessation of exercise, and 1 h after cessation of strength training. Tissue was analyzed for total and phosphorylated (p-) signaling proteins linked to the mTOR and AMPK networks.

Results:

Strength-training performance was similar between ST, ST-END, and END-ST. p-S6k1 was elevated from baseline 1 h posttraining in ST and ST-END (both P < .05). p-4E-BP1 was significantly lower than baseline post-ST (P = .01), whereas at 1 h postexercise in the ST-END condition p-4E-BP1 was significantly greater than postexercise (P = .04). p-ACC was elevated from baseline both postexercise and 1 h postexercise (both P < .05) in the END-ST condition. AMPK, mTOR, p38, PKB, and eEF2 responded similarly to ST, ST-END, and END-ST. Signaling responses to ST, ST-END, and END were largely similar. As such it cannot be ascertained which sequence of concurrent strength and endurance training is most favorable in promoting anabolic signaling.

Conclusions:

In the case of the current study an acute bout of concurrent training of differing sequences elicited similar responses of the AMPK and mTOR networks.