Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Tim Whiteley x
Clear All Modify Search
Open access

Tim J. Gabbett and Rod Whiteley

The authors have observed that in professional sporting organizations the staff responsible for physical preparation and medical care typically practice in relative isolation and display tension as regards their attitudes toward training-load prescription (much more and much less training, respectively). Recent evidence shows that relatively high chronic training loads, when they are appropriately reached, are associated with reduced injury risk and better performance. Understanding this link between performance and training loads removes this tension but requires a better understanding of the relationship between the acute:chronic workload ratio (ACWR) and its association with performance and injury. However, there remain many questions in the area of ACWR, and we are likely at an early stage of our understanding of these parameters and their interrelationships. This opinion paper explores these themes and makes recommendations for improving performance through better synergies in support-staff approaches. Furthermore, aspects of the ACWR that remain to be clarified—the role of shared decision making, risk:benefit estimation, and clearer accountability—are discussed.

Restricted access

William Romani, David H. Perrin and Tim Whiteley

A case of tarsal tunnel syndrome in a male collegiate lacrosse player is presented. The subject reported symptoms consistent with tarsal tunnel syndrome following two incidents of medial ankle sprain in one lacrosse season. Conservative treatment was successful following the first ankle sprain but failed to relieve pain and paresthesia in his heel and medial arch following the second injury. Laboratory tests provided an inconclusive diagnosis, and the subject underwent a retinacular release 5 months after the second ankle sprain. Following a 13-week rehabilitation program, the subject returned to full participation in his sport.

Restricted access

Nick B. Murray, Georgia M. Black, Rod J. Whiteley, Peter Gahan, Michael H. Cole, Andy Utting and Tim J. Gabbett

Purpose:

Throwing loads are known to be closely related to injury risk. However, for logistic reasons, typically only pitchers have their throws counted, and then only during innings. Accordingly, all other throws made are not counted, so estimates of throws made by players may be inaccurately recorded and underreported. A potential solution to this is the use of wearable microtechnology to automatically detect, quantify, and report pitch counts in baseball. This study investigated the accuracy of detection of baseball pitching and throwing in both practice and competition using a commercially available wearable microtechnology unit.

Methods:

Seventeen elite youth baseball players (mean ± SD age 16.5 ± 0.8 y, height 184.1 ± 5.5 cm, mass 78.3 ± 7.7 kg) participated in this study. Participants performed pitching, fielding, and throwing during practice and competition while wearing a microtechnology unit. Sensitivity and specificity of a pitching and throwing algorithm were determined by comparing automatic measures (ie, microtechnology unit) with direct measures (ie, manually recorded pitching counts).

Results:

The pitching and throwing algorithm was sensitive during both practice (100%) and competition (100%). Specificity was poorer during both practice (79.8%) and competition (74.4%).

Conclusions:

These findings demonstrate that the microtechnology unit is sensitive to detect pitching and throwing events, but further development of the pitching algorithm is required to accurately and consistently quantify throwing loads using microtechnology.