Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Timothy Anderson x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Shelby J. Martin and Timothy Anderson

Despite elevated risk of eating pathology (EP) among athletes, utilization of EP-treatment among athletes is low. Factors that may inhibit EP-help-seeking among athletes include perceived social stigma, self-stigma, and perfectionism. Heightened stigma associated with EP and sport climates may be exacerbated by negative perfectionism characteristic of athletes and decrease intentions to seek help for EP. We tested the following moderated-mediation model among a sample of collegiate athletes (N = 201) via online questionnaires: EP indirectly relates to EP help-seeking intentions through perceived and self-stigma and these relations are conditional on negative perfectionism. EP help-seeking intentions were negatively associated with EP severity, stigma, and negative perfectionism. EP was related to eating-specific help-seeking intentions through perceived social stigma, influencing self-stigma, but this was not moderated by negative perfectionism. Targeting mental-health treatment stigma among athletes may reduce risk of untreated EP among collegiate athletes.

Restricted access

Reid J. Reale, Timothy J. Roberts, Khalil A. Lee, Justina L. Bonsignore, and Melissa L. Anderson

We sought to assess the accuracy of current or developing new prediction equations for resting metabolic rate (RMR) in adolescent athletes. RMR was assessed via indirect calorimetry, alongside known predictors (body composition via dual-energy X-ray absorptiometry, height, age, and sex) and hypothesized predictors (race and maturation status assessed via years to peak height velocity), in a diverse cohort of adolescent athletes (n = 126, 77% male, body mass = 72.8 ± 16.6 kg, height = 176.2 ± 10.5 cm, age = 16.5 ± 1.4 years). Predictive equations were produced and cross-validated using repeated k-fold cross-validation by stepwise multiple linear regression (10 folds, 100 repeats). Performance of the developed equations was compared with several published equations. Seven of the eight published equations examined performed poorly, underestimating RMR in >75% to >90% of cases. Root mean square error of the six equations ranged from 176 to 373, mean absolute error ranged from 115 to 373 kcal, and mean absolute error SD ranged from 103 to 185 kcal. Only the Schofield equation performed reasonably well, underestimating RMR in 51% of cases. A one- and two-compartment model were developed, both r 2 of .83, root mean square error of 147, and mean absolute error of 114 ± 26 and 117 ± 25 kcal for the one- and two-compartment model, respectively. Based on the models’ performance, as well as visual inspection of residual plots, the following model predicts RMR in adolescent athletes with better precision than previous models; RMR = 11.1 × body mass (kg) + 8.4 × height (cm) − (340 male or 537 female).