Search Results

You are looking at 1 - 10 of 18 items for

  • Author: Timothy D. Noakes x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

The Hyponatremia of Exercise

Timothy D. Noakes

The hyponatremia of exercise may exist in symptomatic and asymptomatic forms. Symptomatic hyponatremia is usually characterized by severe alterations in cerebral function including coma and grand ma1 seizures; it develops especially in less competitive athletes who have maintained high rates of fluid intake during endurance events lasting at least 5 hours. The hyponatremia becomes symptomatic when the volume of excess fluid retained exceeds 2 to 3 liters. The etiology of the condition is unknown. Possibly as many as three or more pathologies (abnormal fluid retention possibly due to inappropriate ADH secretion, abnormal regulation of the extracellular fluid volume, translocation of sodium into a "third space") must be present for symptomatic hyponatremia to develop. The avoidance of overhydration would appear to be the only certain way that susceptible individuals can prevent symptomatic hyponatremia. Sodium chloride containing solutions ingested in physiologically significant concentrations would likely prevent a possible "third space" effect.

Restricted access

Conventional Testing Produces Submaximal Values for Oxygen Uptake in Elite Runners

Fernando G. Beltrami and Timothy D. Noakes

Purpose: This study aimecd to investigate whether elite athletes could reach higher values of maximal oxygen uptake ( V ˙ O 2 max ) during a decremental exercise test in comparison with a traditional incremental test, as recently demonstrated in trained individuals. Methods: Nine male runners (age 25.8 [5.1] y, season best 10-km time 31:19 [1:50]) performed, on different days, 3 maximal uphill (5% grade) running exercise tests in fixed order: an incremental test (INC1), a V-shape exercise test (where speed started at 0.5 km·h−1 higher than the top stage finished during INC1 and was slowly decreased during 5.5 min, when it was again increased in similar fashion to the INC tests), and a final incremental test (INC2). Results: V ˙ O 2 max during the V-shape exercise test was higher than during INC1 (6.3% [3.0%], P = .01), although running speed was lower (16.6 [1.7] vs 17.9 [1.6] km·h−1, P = .01). Performance was similar between INC1 and INC2, but V ˙ O 2 max during INC2 was higher than INC1 (P < .001). During the V-shape exercise test, 5 participants reached the incremental part of the test, but V ˙ O 2 did not increase ( Δ V ˙ O 2 = 52  [ 259 ] mL · min 1 , P = .67), despite higher running speed (approximately 1.1 km·h−1, P < .01). Heart rate, pulmonary ventilation, breathing rate, and respiratory exchange ratio measured at V ˙ O 2 max were not different between tests. Conclusion: A decremental exercise test of sufficient intensity can produce higher V ˙ O 2 max than a traditional incremental test, even in elite athletes, and this is maintained during a subsequent incremental test.

Restricted access

Carbohydrate, Fluids and Electrolyte Requirements of the Soccer Player: A Stewiew

John A. Hawley, Steven C. Dennis, and Timothy D. Noakes

Soccer requires field players to exercise repetitively at high intensities for the duration of a game, which can result in marked muscle glycogen depletion and hypoglycemia. A soccer match places heavy demands on endogenous muscle and liver glycogen stores and fluid reserves, which must be rapidly replenished when players complete several matches within a brief period of time. Low concentrations of muscle glycogen have been reported in soccer players before a game, and daily carbohydrate (CHO) intakes are often insufficient to replenish muscle glycogen stores, CHO supplementation during soccer matches has been found to result in muscle glycogen sparing (39%), greater second-half running distances, and more goals being scored with less conceded, when compared to consumption of water. Thus, CHO supplementation has been recommended prior to, during, and after matches. In contrast, there is currently insufficient evidence to recommend without reservation the addition of electrolytes to a beverage for ingestion by players during a game resulting in sweat losses of < 4% of body weight.

Restricted access

An Analysis of Pacing Strategies During Men’s World-Record Performances in Track Athletics

Ross Tucker, Michael I. Lambert, and Timothy D. Noakes

Purpose:

To analyze pacing strategies employed during men's world-record performances for 800-m, 5000-m, and 10,000-m races.

Methods:

In the 800-m event, lap times were analyzed for 26 world-record performances from 1912 to 1997. In the 5000-m and 10,000-m events, times for each kilometer were analyzed for 32 (1922 to 2004) and 34 (1921 to 2004) world records.

Results:

The second lap in the 800-m event was significantly slower than the first lap (52.0 ± 1.7 vs 54.4 ± 4.9 seconds, P < .00005). In only 2 world records was the second lap faster than the first lap. In the 5000-m and 10,000-m events, the first and final kilometers were significantly faster than the middle kilometer intervals, resulting in an overall even pace with an end spurt at the end.

Conclusion:

The optimal pacing strategy during world-record performances differs for the 800-m event compared with the 5000-m and 10,000-m events. In the 800-m event, greater running speeds are achieved in the first lap, and the ability to increase running speed on the second lap is limited. In the 5000-m and 10,000-m events, an end spurt occurs because of the maintenance of a reserve during the middle part of the race. In all events, pacing strategy is regulated in a complex system that balances the demand for optimal performance with the requirement to defend homeostasis during exercise.

Restricted access

Comparison of Physiological Responses and Muscle Activity During Incremental and Decremental Cycling Exercise

Fernando G. Beltrami, Christian Froyd, Alexis R. Mauger, Alan J. Metcalfe, and Timothy D. Noakes

Objective: To investigate whether a cycling test based on decremental loads (DEC) could elicit higher maximal oxygen uptake ( V ˙ O 2 max ) values compared with an incremental test (INC). Design: Nineteen well-trained individuals performed an INC and a DEC test on a single day, in randomized order. Methods: During INC, the load was increased by 20 W·min−1 until task failure. During DEC, the load started at 20 W higher than the peak load achieved during INC (familiarization trial) and was progressively decreased. Gas exchange and electromyography (EMG) activity (n = 11) from 4 lower-limb muscles were monitored throughout the tests. Physiological and EMG data measured at V ˙ O 2 max were compared between the 2 protocols using paired t tests. Results: V ˙ O 2 max during the DEC was 3.0% (5.9%) higher than during INC (range 94%–116%; P = .01), in spite of a lower power output (−21 [20] W, P < .001) at V ˙ O 2 max . Pulmonary ventilation (P = .036) and breathing rate (P = .023) were also higher during DEC. EMG activity measured at V ˙ O 2 max was not different between tests, despite the lower output during DEC. Conclusions: A DEC exercise test produces higher V ˙ O 2 max in cycling compared with an INC test, which was accompanied by higher pulmonary ventilation and similar EMG activity. The additional O2 uptake during DEC might be related to extra work performed either by the respiratory muscles and/or the less oxidatively efficient leg muscles.

Restricted access

The Effects of Medium-Chain Triacylglycerol and Carbohydrate Ingestion on Ultra-Endurance Exercise Performance

Julia H. Goedecke, Virginia R. Clark, Timothy D. Noakes, and Estelle V. Lambert

The aims of the study were to determine if medium-chain triacylglycerol (MCT), ingested in combination with carbohydrate (CHO), would alter substrate metabolism and improve simulated competitive ultra-endurance cycling performance. Eight endurance-trained cyclists took part in this randomized, single-blind crossover study. On two separate occasions, subjects cycled for 270 min at 50% of peak power output, interspersed with four 75 kJ sprints at 60 min intervals, followed immediately by a 200 kJ time-trial. One hour prior to the exercise trials, subjects ingested either 75 g of CHO or 32 g of MCT, and then ingested 200 mL of a 10% CHO (wt/vol) solution or a 4.3% MCT + 10% CHO (wt/vol) solution every 20 min during the CHO and MCT trials, respectively. During the constant-load phases of the 270 min exercise trial, VO2, RER, and heart rate were measured at 30 min intervals and gastrointestinal (GI) symptoms were recorded. There was no difference in VO2 or RER between the MCT and CHO trials (P = 0.40). Hourly sprint (P = 0.03 for trial x time interaction) and time-trial times (14:30 ± 0.58 vs. 12:36 ± 1:6, respectively, P < 0.001) were slower in the MCT than the CHO trial. Half the subjects experienced GI symptoms with MCT ingestion. In conclusion, MCTs ingested prior to exercise and co-ingested with CHO during exercise did not alter substrate metabolism and significantly compromised sprint performance during prolonged ultra-endurance cycling exercise.

Restricted access

Failure of Magnesium Supplementation to Influence Marathon Running Performance or Recovery in Magnesium-Replete Subjects

Sonja Terblanche, Timothy D. Noakes, Steven C. Dennis, De Wet Marais, and Michael Eckert

This study examined the effect of magnesium supplementation on muscle magnesium content, on running performance during a 42-kni marathon footrace, and on muscle damage and the rate of recovery of muscle function following the race. Twenty athletes were divided equally into two matched groups and were studied for 4 weeks before and 6 weeks after a marathon in a double-blind trial; the experimental group received magnesium supplement (365 mg per day) and the control group, placebo. Magnesium supplementation did not increase either muscle or serum magnesium concentrations and had no measurable effect on 42-km marathon running performance. Extra magnesium ingestion also had no influence on the extent of muscle damage or the rate of recovery of muscle function. The latter was significantly reduced immediately after the marathon but returned to normal within 1 week. Thus, magnesium supplementation in magnesium-replete subjects did not enhance performance or increase resistance to muscle damage during the race, or the rate of recovery of muscle function following the race.

Restricted access

Caffeine Ingestion Does Not Alter Performance during a 100-km Cycling Time-Trial Performance

Angus M. Hunter, Allan St, Clair Gibson, Malcolm Collins, Mike Lambert, and Timothy D. Noakes

This study analyzed the effect of caffeine ingestion on performance during a repeated-measures, 100-km, laboratory cycling time trial that included bouts of 1- and 4-km high intensity epochs (HIE). Eight highly trained cyclists participated in 3 separate trials—placebo ingestion before exercise with a placebo carbohydrate solution and placebo tablets during exercise (Pl), or placebo ingestion before exercise with a 7% carbohydrate drink and placebo tablets during exercise (Cho), or caffeine tablet ingestion before and during exercise with 7% carbohydrate (Caf). Placebo (twice) or 6 mg · kg−1 caffeine was ingested 60 min prior to starting 1 of the 3 cycling trials, during which subjects ingested either additional placebos or a caffeine maintenance dose of 0.33 mg · kg−1 every 15 min to trial completion. The 100-km time trial consisted of five 1-km HIE after 10, 32, 52, 72, and 99 km, as well as four 4-km HIE after 20, 40, 60, and 80 km. Subjects were instructed to complete the time trial and all HIE as fast as possible. Plasma (caffeine) was significantly higher during Caf (0.43 ± 0.56 and 1.11 ± 1.78 mM pre vs. post Pl; and 47.32 ± 12.01 and 72.43 ± 29.08 mM pre vs. post Caf). Average power, HIE time to completion, and 100-km time to completion were not different between trials. Mean heart rates during both the 1-km HIE (184.0 ± 9.8 Caf; 177.0 ± 5.8 Pl; 177.4 ± 8.9 Cho) and 4-km HIE (181.7 ± 5.7 Caf; 174.3 ± 7.2 Pl; 175.6 ± 7.6 Cho; p < .05) was higher in Caf than in the other groups. No significant differences were found between groups for either EMG amplitude (IEMG) or mean power frequency spectrum (MPFS). IEMG activity and performance were not different between groups but were both higher in the 1-km HIE, indicating the absence of peripheral fatigue and the presence of a centrally-regulated pacing strategy that is not altered by caffeine ingestion. Caffeine may be without ergogenic benefit during endurance exercise in which the athlete begins exercise with a defined, predetermined goal measured as speed or distance.

Restricted access

A Carbohydrate Ingestion Intervention in an Elite Athlete Who Follows a Low-Carbohydrate High-Fat Diet

Christopher C. Webster, Jeroen Swart, Timothy D. Noakes, and James A. Smith

This case study documents the performance of an elite-level, exceptionally well-fat-adapted endurance athlete as he reintroduced carbohydrate (CHO) ingestion during high-intensity training. He had followed a strict low-CHO high-fat (LCHF) diet for 2 y, during which he ate approximately 80 g of CHO per day and trained and raced while ingesting only water. While following this diet, he earned numerous podium finishes in triathlons of various distances. However, he approached the authors to test whether CHO supplementation during exercise would further increase his high-intensity performance without affecting his fat adaptation. This 7-wk n = 1 investigation included a 4-wk habitual LCHF diet phase during which he drank only water during training and performance trials and a 3-wk habitual diet plus CHO ingestion phase (LCHF + CHO) during which he followed his usual LCHF diet but ingested 60 g/h CHO during 8 high-intensity training sessions and performance trials. After each phase, rates of fat oxidation and 30-s sprint, 4-min sprint, 20-km time trial (TT), and 100-km TT performances were measured. Compared with LCHF, 20-km TT time improved by 2.8% after LCHF + CHO, which would be a large difference in competition. There was no change in 30-s sprint power, a small improvement in 4-min sprint power (1.6%), and a small reduction in 100-km TT time (1.1%). The authors conclude that CHO ingestion during exercise was likely beneficial for this fat-adapted athlete during high-intensity endurance-type exercise (4–30 min) but likely did not benefit his short-sprint or prolonged endurance performance.

Restricted access

Decreased Resting Metabolic Rate in Ballet Dancers with Menstrual Irregularity

Kathryn H. Myburgh, Claire Berman, Illana Novick, Timothy D. Noakes, and Estelle V. Lambert

We studied 21 ballet dancers aged 19.4 ± 1.4 years, hypothesizing that undernu-trition was a major factor in menstrual irregularity in this population. Menstrual history was determined by questionnaire. Eight dancers had always been regular (R). Thirteen subjects had a history of menstrual irregularity (HI). Of these, 2 were currently regularly menstruating, 3 had short cycles, 6 were oligomenorrheic, and 2 were amenorrheic. Subjects completed a weighed dietary record and an Eating Attitudes Test (EAT). The following physiological parameters were measured: body composition by anthropometry, resting metabolic rate (RMR) by open-circuit indirect calorimetry, and serum thyroid hormone concentrations by radioimmunoassay. R subjects had significantly higher RMR than HI subjects. Also, HI subjects had lower RMR than predicted by fat-free mass, compared to the R subjects. Neitherreported energy intake nor serum thyroid hormone concentrations were different between R and HI subjects. EAT scores varied and were not different between groups. We concluded that in ballet dancers, low RMR is more strongly associated with menstrual irregularity than is currentreported energy intake or serum thyroid hormone concentrations.