Search Results

You are looking at 1 - 10 of 17 items for

  • Author: Timothy D. Noakes x
  • All content x
Clear All Modify Search
Restricted access

Timothy D. Noakes

The hyponatremia of exercise may exist in symptomatic and asymptomatic forms. Symptomatic hyponatremia is usually characterized by severe alterations in cerebral function including coma and grand ma1 seizures; it develops especially in less competitive athletes who have maintained high rates of fluid intake during endurance events lasting at least 5 hours. The hyponatremia becomes symptomatic when the volume of excess fluid retained exceeds 2 to 3 liters. The etiology of the condition is unknown. Possibly as many as three or more pathologies (abnormal fluid retention possibly due to inappropriate ADH secretion, abnormal regulation of the extracellular fluid volume, translocation of sodium into a "third space") must be present for symptomatic hyponatremia to develop. The avoidance of overhydration would appear to be the only certain way that susceptible individuals can prevent symptomatic hyponatremia. Sodium chloride containing solutions ingested in physiologically significant concentrations would likely prevent a possible "third space" effect.

Restricted access

Fernando G. Beltrami and Timothy D. Noakes

Purpose: This study aimecd to investigate whether elite athletes could reach higher values of maximal oxygen uptake (V˙O2max) during a decremental exercise test in comparison with a traditional incremental test, as recently demonstrated in trained individuals. Methods: Nine male runners (age 25.8 [5.1] y, season best 10-km time 31:19 [1:50]) performed, on different days, 3 maximal uphill (5% grade) running exercise tests in fixed order: an incremental test (INC1), a V-shape exercise test (where speed started at 0.5 km·h−1 higher than the top stage finished during INC1 and was slowly decreased during 5.5 min, when it was again increased in similar fashion to the INC tests), and a final incremental test (INC2). Results: V˙O2max during the V-shape exercise test was higher than during INC1 (6.3% [3.0%], P = .01), although running speed was lower (16.6 [1.7] vs 17.9 [1.6] km·h−1, P = .01). Performance was similar between INC1 and INC2, but V˙O2max during INC2 was higher than INC1 (P < .001). During the V-shape exercise test, 5 participants reached the incremental part of the test, but V˙O2 did not increase (ΔV˙O2=52 [259]mL·min1, P = .67), despite higher running speed (approximately 1.1 km·h−1, P < .01). Heart rate, pulmonary ventilation, breathing rate, and respiratory exchange ratio measured at V˙O2max were not different between tests. Conclusion: A decremental exercise test of sufficient intensity can produce higher V˙O2max than a traditional incremental test, even in elite athletes, and this is maintained during a subsequent incremental test.

Restricted access

John A. Hawley, Steven C. Dennis, and Timothy D. Noakes

Soccer requires field players to exercise repetitively at high intensities for the duration of a game, which can result in marked muscle glycogen depletion and hypoglycemia. A soccer match places heavy demands on endogenous muscle and liver glycogen stores and fluid reserves, which must be rapidly replenished when players complete several matches within a brief period of time. Low concentrations of muscle glycogen have been reported in soccer players before a game, and daily carbohydrate (CHO) intakes are often insufficient to replenish muscle glycogen stores, CHO supplementation during soccer matches has been found to result in muscle glycogen sparing (39%), greater second-half running distances, and more goals being scored with less conceded, when compared to consumption of water. Thus, CHO supplementation has been recommended prior to, during, and after matches. In contrast, there is currently insufficient evidence to recommend without reservation the addition of electrolytes to a beverage for ingestion by players during a game resulting in sweat losses of < 4% of body weight.

Restricted access

Ross Tucker, Michael I. Lambert, and Timothy D. Noakes

Purpose:

To analyze pacing strategies employed during men's world-record performances for 800-m, 5000-m, and 10,000-m races.

Methods:

In the 800-m event, lap times were analyzed for 26 world-record performances from 1912 to 1997. In the 5000-m and 10,000-m events, times for each kilometer were analyzed for 32 (1922 to 2004) and 34 (1921 to 2004) world records.

Results:

The second lap in the 800-m event was significantly slower than the first lap (52.0 ± 1.7 vs 54.4 ± 4.9 seconds, P < .00005). In only 2 world records was the second lap faster than the first lap. In the 5000-m and 10,000-m events, the first and final kilometers were significantly faster than the middle kilometer intervals, resulting in an overall even pace with an end spurt at the end.

Conclusion:

The optimal pacing strategy during world-record performances differs for the 800-m event compared with the 5000-m and 10,000-m events. In the 800-m event, greater running speeds are achieved in the first lap, and the ability to increase running speed on the second lap is limited. In the 5000-m and 10,000-m events, an end spurt occurs because of the maintenance of a reserve during the middle part of the race. In all events, pacing strategy is regulated in a complex system that balances the demand for optimal performance with the requirement to defend homeostasis during exercise.

Restricted access

Kathryn H. Myburgh, Claire Berman, Illana Novick, Timothy D. Noakes, and Estelle V. Lambert

We studied 21 ballet dancers aged 19.4 ± 1.4 years, hypothesizing that undernu-trition was a major factor in menstrual irregularity in this population. Menstrual history was determined by questionnaire. Eight dancers had always been regular (R). Thirteen subjects had a history of menstrual irregularity (HI). Of these, 2 were currently regularly menstruating, 3 had short cycles, 6 were oligomenorrheic, and 2 were amenorrheic. Subjects completed a weighed dietary record and an Eating Attitudes Test (EAT). The following physiological parameters were measured: body composition by anthropometry, resting metabolic rate (RMR) by open-circuit indirect calorimetry, and serum thyroid hormone concentrations by radioimmunoassay. R subjects had significantly higher RMR than HI subjects. Also, HI subjects had lower RMR than predicted by fat-free mass, compared to the R subjects. Neitherreported energy intake nor serum thyroid hormone concentrations were different between R and HI subjects. EAT scores varied and were not different between groups. We concluded that in ballet dancers, low RMR is more strongly associated with menstrual irregularity than is currentreported energy intake or serum thyroid hormone concentrations.

Restricted access

Sonja Terblanche, Timothy D. Noakes, Steven C. Dennis, De Wet Marais, and Michael Eckert

This study examined the effect of magnesium supplementation on muscle magnesium content, on running performance during a 42-kni marathon footrace, and on muscle damage and the rate of recovery of muscle function following the race. Twenty athletes were divided equally into two matched groups and were studied for 4 weeks before and 6 weeks after a marathon in a double-blind trial; the experimental group received magnesium supplement (365 mg per day) and the control group, placebo. Magnesium supplementation did not increase either muscle or serum magnesium concentrations and had no measurable effect on 42-km marathon running performance. Extra magnesium ingestion also had no influence on the extent of muscle damage or the rate of recovery of muscle function. The latter was significantly reduced immediately after the marathon but returned to normal within 1 week. Thus, magnesium supplementation in magnesium-replete subjects did not enhance performance or increase resistance to muscle damage during the race, or the rate of recovery of muscle function following the race.

Restricted access

Christopher C. Webster, Jeroen Swart, Timothy D. Noakes, and James A. Smith

This case study documents the performance of an elite-level, exceptionally well-fat-adapted endurance athlete as he reintroduced carbohydrate (CHO) ingestion during high-intensity training. He had followed a strict low-CHO high-fat (LCHF) diet for 2 y, during which he ate approximately 80 g of CHO per day and trained and raced while ingesting only water. While following this diet, he earned numerous podium finishes in triathlons of various distances. However, he approached the authors to test whether CHO supplementation during exercise would further increase his high-intensity performance without affecting his fat adaptation. This 7-wk n = 1 investigation included a 4-wk habitual LCHF diet phase during which he drank only water during training and performance trials and a 3-wk habitual diet plus CHO ingestion phase (LCHF + CHO) during which he followed his usual LCHF diet but ingested 60 g/h CHO during 8 high-intensity training sessions and performance trials. After each phase, rates of fat oxidation and 30-s sprint, 4-min sprint, 20-km time trial (TT), and 100-km TT performances were measured. Compared with LCHF, 20-km TT time improved by 2.8% after LCHF + CHO, which would be a large difference in competition. There was no change in 30-s sprint power, a small improvement in 4-min sprint power (1.6%), and a small reduction in 100-km TT time (1.1%). The authors conclude that CHO ingestion during exercise was likely beneficial for this fat-adapted athlete during high-intensity endurance-type exercise (4–30 min) but likely did not benefit his short-sprint or prolonged endurance performance.

Restricted access

Julia H. Goedecke, Richard Elmer, Steven C. Dennis, Ingrid Schloss, Timothy D. Noakes, and Estelle V. Lambert

The effects of ingesting different amounts of medium-chain triacylglycerol (MCT) and carbohydrate (CHO) on gastric symptoms, fuel metabolism, and exercise performance were measured in 9 endurance-trained cyclists. Participants, 2 hr after a standardized lunch, cycled for 2 hr at 63% of peak oxygen consumption and then performed a simulated 40-km time trial (T trial). During the rides, participants ingested either 10% 14C-glucose (GLU), 10% 14C-GLU + 1.72%MCT(LO-MCT), or 10% l4C-GLU + 3.44%MCT(HI-MCT) solutions: 400 ml at the start of exercise and then 100 ml every lOmin.MCTingestiondid not affect gastrointestinal symptoms. It only raised serum free fatty acid (FFA) and ß-hydroxybutyrate concentrations. Higher FFA and ß-hydroxybutyrate concentrations with MCT ingestion did not affect fuel oxidation or T-trial performance. The high CHO content of the pretrial lunch increased starting plasma insulin levels, which may have promoted CHO oxidation despite elevated circulating FFA concentrations with MCT ingestion.

Restricted access

Hassane Zouhal, Abderraouf Ben Abderrahman, Jacques Prioux, Beat Knechtle, Lotfi Bouguerra, Wiem Kebsi, and Timothy D. Noakes

Purpose:

To determine the effect of drafting on running time, physiological response, and rating of perceived exertion (RPE) during 3000-m track running.

Methods:

Ten elite middle- and long-distance runners performed 3 track-running sessions. The 1st session determined maximal oxygen uptake and maximal aerobic speed using a lightweight ambulatory respiratory gasexchange system (K4B2). The 2nd and the 3rd tests consisted of nondrafting 3000-m running (3000-mND) and 3000-m running with drafting for the 1st 2000 m (3000-mD) performed on the track in a randomized counterbalanced order.

Results:

Performance during the 3000-mND (553.59 ± 22.15 s) was significantly slower (P < .05) than during the 3000-mD (544.74 ± 18.72 s). Cardiorespiratory responses were not significantly different between the trials. However, blood lactate concentration was significantly higher (P < .05) after the 3000-mND (16.4 ± 2.3 mmol/L) than after the 3000-mD (13.2 ± 5.6 mmol/L). Athletes perceived the 3000-mND as more strenuous than the 3000-mD (P < .05) (RPE = 16.1 ± 0.8 vs 13.1 ± 1.3). Results demonstrate that drafting has a significant effect on performance in highly trained runners.

Conclusion:

This effect could not be explained by a reduced energy expenditure or cardiorespiratory effort as a result of drafting. This raises the possibility that drafting may aid running performance by both physiological and nonphysiological (ie, psychological) effects.

Restricted access

Lara R. Keytel, Michael I. Lambert, Judith Johnson, Timothy D. Noakes, and Estelle V. Lambert

The aim of the study was to determine the effects of 8 weeks of moderate exercise training, on 24-hour free living energy expenditure in previously sedentary post-menopausal women. The experimental group (EX) included 9 women. Ten non-exercising control subjects (CON) were recruited to undergo pre- and post-testing. Estimated total daily energy expenditure (TDEE), total 24-hour heart beats (HB), total energy intake (TEI), resting metabolic rate, maximal oxygen consumption (V̇O2max), body composition, and submaximal heart rate were measured before and after the exercise intervention. Body composition did not change (body fat % in CON 34.0 ± 4.0% vs. 33.9 ± 3.6% and EX 34.1 ± 4.0% vs. 34.0 ± 3.4%). Mean submaximal heart rate during steady-state exercise in EX was lower after training compared to CON (p < .05); however, V̇O2max did not significantly (CON 1.96 ± 0.23 vs. 1.99 ± 0.241 LO2/min and EX 1.86 ± 0.39 vs. 1.94 ± 0.30 LO2/min). Neither estimated TDEE (CON, 11.6 ± 2.0 vs. 11.4 ± 2.78 MJ; and EX 11.4 ± 3.3 vs. 11.5 ± 2.5 MJ, pre vs. post, respectively), RMR (CON 134.2 ± 9.4 vs. 136.9 ± 15.0 KJ/kgFFM/day, and EX 138.4 ± 6.4 vs. 140.7 ± 14.2 KJ/kgFFM/day, pre vs. post, respectively), TEI (CON 7.9 ± 2.2 vs. 8.2 ± 2.5 MJ, and EX 9.4 ±1.6 vs. 8.3 ± 2.8 MJ), nor HB (CON 110,808 ± 12,574 vs. 107,366 ± 12,864 beats, and EX 110,188 ± 9,219 vs. 114,590 ± 12,750 beats) change over 8 weeks in either group. These data suggest that a moderate exercise program may not impact on TDEE, RMR, TEI, or HB in previously sedentary, older women.