Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Tomoko Aoyama x
Clear All Modify Search
Restricted access

Zhen-Bo Cao, Nobuyuki Miyatake, Tomoko Aoyama, Mitsuru Higuchi and Izumi Tabata


The purpose was to develop new maximal oxygen uptake (VO2max) prediction models using a perceptually regulated 3-minute walk test.


VO2max was measured with a maximal incremental cycle test in 283 Japanese adults. A 3-minute walk test was conducted at a self-regulated intensity corresponding to ratings of perceived exertion (RPE) 13.


A 3-minute walk distance (3MWD) was significantly related to VO2max (r = .60, P < .001). Three prediction models were developed by multiple regression to estimate VO2max using data on gender, age, 3MWD, and either BMI [BMI model, multiple correlation coefficients (R) = .78, standard error of estimate (SEE) = 5.26 ml⋅kg-1⋅min-1], waist circumference (WC model, R = .80, SEE = 5.04 ml⋅kg-1⋅min-1), or body fat percentage (%Fat model, R = .84, SEE = 4.57 ml⋅kg-1⋅min-1), suggesting that the %Fat model is the best model [VO2max = 37.501 + 0.463 × Gender (0 = women, 1 = men) – 0.195 × Age – 0.589 × %Fat + 0.053 × 3MWD]. Cross-validation by using the predicted residual sum of squares (PRESS) procedures demonstrated a high level of cross-validity of all prediction models.


The new VO2max prediction models are reasonably applicable to estimating VO2max in Japanese adults and represent a quick, low-risk, and convenient means for estimating VO2max in the field.