Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Valentina Camomilla x
Clear All Modify Search
Restricted access

Federico Quinzi, Valentina Camomilla, Alberto Di Mario, Francesco Felici and Paola Sbriccoli

Purpose:

Training in martial arts is commonly performed by repeating a technical action continuously for a given number of times. This study aimed to investigate if the repetition of the task alters the proper technical execution, limiting the training efficacy for the technical evaluation during competition. This aim was pursued analyzing lower-limb kinematics and muscle activation during repeated roundhouse kicks.

Methods:

Six junior karate practitioners performed continuously 20 repetitions of the kick. Hip and knee kinematics and sEMG of vastus lateralis, biceps (BF), and rectus femoris were recorded. For each repetition, hip abduction–adduction and flexion–extension and knee flexion–extension peak angular displacements and velocities, agonist and antagonist muscle activation were computed. Moreover, to monitor for the presence of myoelectric fatigue, if any, the median frequency of the sEMG was computed. All variables were normalized with respect to their individual maximum observed during the sequence of kicks. Linear regressions were fitted to each normalized parameter to test its relationship with the repetition number.

Results:

Linear-regression analysis showed that, during the sequence, the athletes modified their technique: Knee flexion, BF median frequency, hip abduction, knee-extension angular velocity, and BF antagonist activation significantly decreased. Conversely, hip flexion increased significantly.

Conclusions:

Since karate combat competitions require proper technical execution, training protocols combining severe fatigue and technical actions should be carefully proposed because of technique adaptations. Moreover, trainers and karate masters should consider including specific strength exercises for the BF and more generally for knee flexors.

Restricted access

Elena Bergamini, Pélagie Guillon, Valentina Camomilla, Hélène Pillet, Wafa Skalli and Aurelio Cappozzo

The proper execution of the sprint start is crucial in determining the performance during a sprint race. In this respect, when moving from the crouch to the upright position, trunk kinematics is a key element. The purpose of this study was to validate the use of a trunk-mounted inertial measurement unit (IMU) in estimating the trunk inclination and angular velocity in the sagittal plane during the sprint start. In-laboratory sprint starts were performed by five sprinters. The local acceleration and angular velocity components provided by the IMU were processed using an adaptive Kalman filter. The accuracy of the IMU inclination estimate and its consistency with trunk inclination were assessed using reference stereophotogrammetric measurements. A Bland-Altman analysis, carried out using parameters (minimum, maximum, and mean values) extracted from the time histories of the estimated variables, and curve similarity analysis (correlation coefficient > 0.99, root mean square difference < 7 deg) indicated the agreement between reference and IMU estimates, opening a promising scenario for an accurate in-field use of IMUs for sprint start performance assessment.