Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Valmor Tricoli x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Renato Barroso, Ronaldo K. Cardoso, Everton Crivoi Carmo, and Valmor Tricoli

Session rating of perceived exertion (SRPE) is a practical method to assess internal training load to provide appropriate stimuli. However, coaches and athletes might rate training sessions differently, which can impair performance development. In addition, SRPE might be influenced by athletes’ training experience. The authors studied 160 swimmers of different age groups and different competitive swimming experience and 9 coaches. SRPE was indicated by the swimmers 30 min after the end of a training session and before the training session by the coaches. Training-session intensities were classified into easy (SRPE <3), moderate (SRPE 3–5), and difficult (SRPE >5), based on coaches’ perception. We observed that the correlation between coaches’ and athletes’ SRPE increased with increased age and competitive swimming experience, r = .31 for the 11- to 12-y-old group (P < .001), r = .51 for the 13- to 14-y-old group (P < .001), and r = .74 for the 15- to 16-y-old group (P < .001). In addition, younger swimmers (11–12 y, P < .01; 13–14 y, P < .01) rated training intensity differently from coaches in all 3 categories (easy, moderate, and difficult), while the older group rated differently in only 1 category (difficult, P < .01). These findings suggest that the more experienced swimmers are, the more accurate their SRPE is.

Restricted access

Everton C. do Carmo, Renato Barroso, Andrew Renfree, Natalia R. da Silva, Saulo Gil, and Valmor Tricoli

Purpose: To verify the affective feelings (AFs) and rating of perceived exertion (RPE) responses during a 10-km competitive head-to-head (HTH) running race and compare them with a time-trial (TT) running race. Methods: Fourteen male runners completed 2 × 10-km runs (TT and HTH) on different days. Speed, RPE, and AF were measured every 400 m. For pacing analysis, races were divided into the following 4 stages: first 400 m (F400), 401–5000 m (M1), 5001–9600 m (M2), and the last 400 m (final sprint). Results: Improvement of performance was observed (39:32 [02:41] min:s vs 40:28 [02:55] min:s; P = .03; effect size = −0.32) in HTH compared with TT. There were no differences in either pacing strategy or RPE between conditions. AFs were higher during the HTH, being different in M2 compared with TT (2.09 [1.81] vs 0.22 [2.25]; P = .02; effect size = 0.84). Conclusions: AFs are directly influenced by the presence of opponents during an HTH race, and a more positive AF could be involved in the dissociation between RPE and running speed and, consequently, the overall race performance.

Restricted access

Everton C. do Carmo, Renato Barroso, Andrew Renfree, Saulo Gil, and Valmor Tricoli

The effects of an enforced fast start on long-distance performance are controversial and seem to depend on the athlete’s capacity to delay and tolerate metabolic disruption. The aim of this study was to investigate the effects of an enforced start on 10-km-running performance and the influence of the some physiological and performance variables on the ability to tolerate an enforced fast start during the running. Fifteen moderately trained runners performed two 10-km time trials (TTs): free pacing (FP-TT) and fast start (FS-TT). During FS-TT, speed during the first kilometer was 6% higher than in FP-TT. Maximal oxygen uptake (VO2max), peak velocity (PV), velocity associated with VO2max (vVO2max), ventilatory threshold, and running economy at 10 and 12 km/h and FP-TT average velocity (AV-10 km) were individually determined. There were no differences between FP-TT and FS-TT performance (45:01 ± 4:08 vs 45:11 ± 4:46 min:s, respectively, P = .4). Eight participants improved (+2.2%) their performance and were classified as positive responders (PR) and 7 decreased (–3.3%) performance and were classified as negative responders (NR). Running speed was significantly higher for PR between 6 and 9.2 km (P < .05) during FS-TT. In addition, PR presented higher PV (P = .02) and vVO2max (P = .01) than NR, suggesting that PV and vVO2max might influence the ability to tolerate a fast-start strategy. In conclusion, there was an individual response to the enforced fast-start strategy during 10-km running, and those who improved performance also presented higher vVO2max and PV, suggesting a possible association between these variables and response to the strategy adopted.

Restricted access

Lilian F. Wallerstein, Renato Barroso, Valmor Tricoli, Marco T. Mello, and Carlos Ugrinowitsch

Ramp isometric contractions determine peak torque (PT) and neuromuscular activation (NA), and ballistic contractions can be used to evaluate rate of torque development (RTD) and electrical mechanical delay (EMD). The purposes of this study were to assess the number of sessions required to stabilize ramp and ballistic PT and to compare PT and NA between contractions in older adults. Thirty-five older men and women (age 63.7 ± 3.7 yr, body mass 64.3 ± 10.7 kg, height 159.2 ± 6.6 cm) performed 4 sessions of unilateral ramp and ballistic isometric knee extension, 48 hr apart. PT significantly increased (main time effect p < .05) from the first to the third session, with no further improvements thereafter. There was a trend toward higher PT in ballistic than in ramp contractions. No difference between contraction types on EMG values was observed. Therefore, the authors suggest that 3 familiarization sessions be performed to correctly assess PT. In addition, PT, NA, RTD, and EMD can be assessed with ballistic contraction in older adults.

Restricted access

Lilian França Wallerstein, Valmor Tricoli, Renato Barroso, André L.F. Rodacki, Luciano Russo, André Yui Aihara, Artur da Rocha Correa Fernandes, Marco Tulio de Mello, and Carlos Ugrinowitsch

The purpose of this study was to compare the neuromuscular adaptations produced by strength-training (ST) and power-training (PT) regimens in older individuals. Participants were balanced by quadriceps cross-sectional area (CSA) and leg-press 1-repetition maximum and randomly assigned to an ST group (n = 14; 63.6 ± 4.0 yr, 79.7 ± 17.2 kg, and 163.9 ± 9.8 cm), a PT group (n = 16; 64.9 ± 3.9 yr, 63.9 ± 11.9 kg, and 157.4 ± 7.7 cm), or a control group (n = 13; 63.0 ± 4.0 yr, 67.2 ± 10.8 kg, and 159.8 ± 6.8 cm). ST and PT were equally effective in increasing (a) maximum dynamic and isometric strength (p < .05), (b) increasing quadriceps muscle CSA (p < .05), and (c) decreasing electrical mechanical delay of the vastus lateralis muscle (p < .05). There were no significant changes in neuromuscular activation after training. The novel finding of the current study is that PT seems to be an attractive alternative to regular ST to maintain and improve muscle mass.