Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Vegard Rasdal x
Clear All Modify Search
Restricted access

Øyvind Sandbakk, Vegard Rasdal, Steinar Bråten, Frode Moen and Gertjan Ettema

Purpose:

To compare sport-specific laboratory capacities and the annual training of world-class Nordic combined (NC) athletes with specialized ski jumpers (SJ) and cross-country (XC) skiers.

Methods:

Five world-class athletes from each sports discipline were compared. Ski jump imitations were performed on a 3-dimensional force plate in NC athletes and SJ, whereas XC skiing characteristics were obtained from submaximal and maximal roller ski skating on a treadmill in NC athletes and XC skiers. In addition, anthropometrics and annual training characteristics were determined.

Results:

NC athletes demonstrated 9% higher body mass and showed 17% lower vertical speed in the ski jump imitation than SJ (all P < .05). NC athletes had 12% lower body mass and showed 10% lower peak treadmill speed and 12% lower body-mass-normalized peak oxygen uptake than XC skiers (all P < .05). NC athletes performed half the number of ski-jumping-specific sessions and outdoor ski jumps compared with SJ. NC athletes performed 31% less endurance training, mainly caused by lower amounts of low- and moderate-intensity training in the classical technique, whereas high-intensity strength and speed training and endurance training in the skating technique did not differ substantially from XC skiers.

Conclusions:

To simultaneously optimize endurance, explosive, and technical capacities in 2 different disciplines, world-class NC athletes train approximately two-thirds of the XC skier’s endurance training volume and perform one-half of the ski-jump-specific training compared with SJ. Still, the various laboratory capacities differed only 10–17% compared with SJ and XC skiers.

Restricted access

Espen Tønnessen, Vegard Rasdal, Ida S. Svendsen, Thomas A. Haugen, Erlend Hem and Øyvind Sandbakk

Performing at an elite level in Nordic combined (NC) requires both the explosiveness required for ski jumping performance and the endurance capacity required for cross-country skiing.

Purpose:

To describe the characteristics of world-class NC athletes’ training and determine how endurance and non–endurance (ie, strength, power, and ski jumping) training is periodized.

Methods:

Annual training characteristics and the periodization of endurance and non–endurance training were determined by analyzing the training diaries of 6 world-class NC athletes.

Results:

Of 846 ± 72 annual training hours, 540 ± 37 h were endurance training, with 88.6% being low-, 5.9% moderate-, and 5.5% high-intensity training. While training frequency remained relatively constant, the total training volume was reduced from the general preparatory to the competition phase, primarily due to less low- and moderate-intensity training (P < .05). A total of 236 ± 55 h/y were spent as non–endurance training, including 211 ± 44 h of power and ski-jump-specific training (908 ± 165 ski jumps and ski-jump imitations). The proportion of non–endurance training increased significantly toward the competition phase (P < .05).

Conclusion:

World-class NC athletes reduce the volume of low- and moderate-intensity endurance training toward the competition phase, followed by an increase in the relative contribution of power and ski-jump training. These data provide novel insight on how successful athletes execute their training and may facilitate more-precise coaching of future athletes in this sport. In addition, this information is of high relevance for the training organization of other sports that require optimization of 2 fundamentally different physical capacities.