Search Results

You are looking at 1 - 7 of 7 items for

  • Author: Victor M. Reis x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Three-Dimensional CFD Analysis of the Hand and Forearm in Swimming

Daniel A. Marinho, António J. Silva, Victor M. Reis, Tiago M. Barbosa, João P. Vilas-Boas, Francisco B. Alves, Leandro Machado, and Abel I. Rouboa

The purpose of this study was to analyze the hydrodynamic characteristics of a realistic model of an elite swimmer hand/forearm using three-dimensional computational fluid dynamics techniques. A three-dimensional domain was designed to simulate the fluid flow around a swimmer hand and forearm model in different orientations (0°, 45°, and 90° for the three axes Ox, Oy and Oz). The hand/forearm model was obtained through computerized tomography scans. Steady-state analyses were performed using the commercial code Fluent. The drag coefficient presented higher values than the lift coefficient for all model orientations. The drag coefficient of the hand/forearm model increased with the angle of attack, with the maximum value of the force coefficient corresponding to an angle of attack of 90°. The drag coefficient obtained the highest value at an orientation of the hand plane in which the model was directly perpendicular to the direction of the flow. An important contribution of the lift coefficient was observed at an angle of attack of 45°, which could have an important role in the overall propulsive force production of the hand and forearm in swimming phases, when the angle of attack is near 45°.

Restricted access

Effects of a Congested Fixture Period on Speed and Power Performance of Elite Young Soccer Players

Tomás T. Freitas, Lucas A. Pereira, Valter P. Reis, Victor Fernandes, Pedro E. Alcaraz, Paulo H.S.M. Azevedo, and Irineu Loturco

Purpose: To investigate the effects of a match-congested period on straight and curve sprint performance, change of direction (COD) speed and deficit, vertical jumping ability, and half-squat (HS) mean propulsive power (MPP) output in young soccer players. Methods: A total of 15 under-20 elite male soccer players participated in 14 matches over 8 weeks. The following assessments were performed before and after the congested fixture period: squat and countermovement jumps, 17-m linear sprint, curve sprint test for the “good” (CSGS) and “weak” (CSWS) sides, modified 17-m Zigzag test, and HS MPP. Magnitude-based inferences and a paired t test were used to analyze pre–post changes in the assessed variables. Results: Very likely (P < .05) decreases were noticed in 17-m sprint velocity (effect size [ES] [90% confidence limit; CL], −0.56 [−0.32 to −0.81]) and CSGS (ES [90% CL], −0.72 [−0.40 to 1.03]) after the 8-week period. A possible but nonsignificant impairment was revealed in CSWS (ES [90% CL], −0.18 [0.03 to −0.39]), and countermovement jump (ES [90% CL], −0.21 [−0.54 to 0.12]). Zigzag velocity (ES [90% CL], −2.90 [−2.45 to −3.36]) and COD deficit (ES [90% CL], 0.86 [0.52 to 1.20]) were almost certainly and significantly (P < .05) reduced and increased, respectively, after the match-congested period. An almost certain and significant (P < .05) reduction was found in HS MPP (ES [90% CL], −1.18 [−0.76 to −1.61]). Conclusions: Straight and curve sprint velocity, COD speed and deficit, and HS MPP were impaired after the match-congested period. Vertical jump height was possibly decreased. Seasonal phases comprising high volumes of soccer-specific training and competition seem to be detrimental to speed–power qualities in under-20 elite soccer players.

Restricted access

Hydrodynamic Drag during Gliding in Swimming

Daniel A. Marinho, Victor M. Reis, Francisco B. Alves, João P. Vilas-Boas, Leandro Machado, António J. Silva, and Abel I. Rouboa

This study used a computational fluid dynamics methodology to analyze the effect of body position on the drag coefficient during submerged gliding in swimming. The k-epsilon turbulent model implemented in the commercial code Fluent and applied to the flow around a three-dimensional model of a male adult swimmer was used. Two common gliding positions were investigated: a ventral position with the arms extended at the front, and a ventral position with the arms placed along side the trunk. The simulations were applied to flow velocities of between 1.6 and 2.0 m·s−1, which are typical of elite swimmers when gliding underwater at the start and in the turns. The gliding position with the arms extended at the front produced lower drag coefficients than with the arms placed along the trunk. We therefore recommend that swimmers adopt the arms in front position rather than the arms beside the trunk position during the underwater gliding.

Restricted access

Effects of Drop Jumps on 1000-m Performance Time and Pacing in Elite Male and Female Endurance Runners

Daniel Boullosa, César C.C. Abad, Valter P. Reis, Victor Fernandes, Claudio Castilho, Luis Candido, Alessandro M. Zagatto, Lucas A. Pereira, and Irineu Loturco

Purpose: To evaluate the effect of drop jumps (DJs) on performance time and pacing in a field test (ie, 1000 m) commonly used to evaluate endurance runners and to evaluate running and jumping performance in male and female athletes separately. Methods: Twenty elite endurance runners (male, n = 10, 27.8 [7.0] y, 62.3 [5.2] kg; female, n = 10, 25.9 [5.3] y, 51.7 [4.1] kg) competing in middle- and long-distance events participated in this study. After determination of the box height associated with the best reactive strength index, athletes randomly performed a warm-up with or without the inclusion of 5 DJs with the highest reactive strength index prior to a 1000-m track test. Performance time and pacing (250-m splits) were determined. Countermovement-jump heights at different time points and blood lactate concentration after running tests were also recorded. Results: A “possible” faster 1000-m time (162.4 vs 165.3 s) with a “very likely” faster first split (38.8 vs 40.3 s) was observed in male athletes in the DJ condition. In contrast, female athletes showed a “possible” slower running time (186.8 vs 184.8 s) and a “likely” greater blood lactate concentration after the 1000-m test in the DJ condition. Male and female athletes presented greater countermovement-jump performances after warm-up and running tests in both conditions. Conclusions: The inclusion of 5 DJs with the height associated with the best reactive strength index induced a “possible” improvement in 1000-m performance time in elite male endurance runners. The current protocol should be avoided in female athletes.

Restricted access

Anaerobic Threshold Prediction Using the OMNI-Walk/Run Scale in Long-Distance Runners: A Preliminary Study

Yuri de Almeida Costa Campos, Jeferson M. Vianna, Miller P. Guimarães, Hiago L.R. Souza, Raúl Domínguez, Jefferson S. Novaes, Luis F.M. Leitão, Sandro F. Silva, and Victor M. Reis

Purpose: To identify the anaerobic threshold through the lactate threshold determined by Dmax and rating of perceived exertion (RPE) threshold by Dmax and to evaluate the agreement and correlation between lactate threshold determined by Dmax and RPE threshold by Dmax during an incremental test performed on the treadmill in long-distance runners. Methods: A total of 16 long-distance runners volunteered to participate in the study. Participants performed 2 treadmill incremental tests for the collection of blood lactate concentrations and RPE separated by a 48-hour interval. The incremental test started at 8 km·h−1, increasing by 1.2 km·h−1 every third minute until exhaustion. During each stage of the incremental test, there were pauses of 30 seconds for the collection of blood lactate concentration and RPE. Results: No significant difference was found between methods lactate threshold determined by Dmax and RPE threshold by Dmax methods (P = .664). In addition, a strong correlation (r = .91) and agreement through Bland–Altman plot analysis were found. Conclusions: The study demonstrated that it is possible to predict anaerobic threshold from the OMNI-walk/run scale curve through a single incremental test on the treadmill. However, further studies are needed to evaluate the reproducibility and objectivity of the OMNI-walk/run scale for anaerobic threshold determination.

Restricted access

Swimming Propulsion Forces Are Enhanced by a Small Finger Spread

Daniel A. Marinho, Tiago M. Barbosa, Victor M. Reis, Per L. Kjendlie, Francisco B. Alves, João P. Vilas-Boas, Leandro Machado, António J. Silva, and Abel I. Rouboa

The main aim of this study was to investigate the effect of finger spread on the propulsive force production in swimming using computational fluid dynamics. Computer tomography scans of an Olympic swimmer hand were conducted. This procedure involved three models of the hand with differing finger spreads: fingers closed together (no spread), fingers with a small (0.32 cm) spread, and fingers with large (0.64 cm) spread. Steady-state computational fluid dynamics analyses were performed using the Fluent code. The measured forces on the hand models were decomposed into drag and lift coefficients. For hand models, angles of attack of 0°, 15°, 30°, 45°, 60°, 75°, and 90°, with a sweep back angle of 0°, were used for the calculations. The results showed that the model with a small spread between fingers presented higher values of drag coefficient than did the models with fingers closed and fingers with a large spread. One can note that the drag coefficient presented the highest values for an attack angle of 90° in the three hand models. The lift coefficient resembled a sinusoidal curve across the attack angle. The values for the lift coefficient presented few differences among the three models, for a given attack angle. These results suggested that fingers slightly spread could allow the hand to create more propulsive force during swimming.

Restricted access

Effects of Progressive Resistance Training on Obesity Indices in Polycystic Ovary Syndrome and the Relationship With Telomere Length

Gislaine S. Kogure, Cristiana L. Miranda-Furtado, Daiana C.C. Pedroso, Victor B. Ribeiro, Matheus C. Eiras, Rafael C. Silva, Lisandra C. Caetano, Rui A. Ferriani, Rodrigo T. Calado, and Rosana M. dos Reis

Background: Physical activity is prescribed as a component of primary management for polycystic ovary syndrome (PCOS). This nonrandomized, therapeutic, open, single-arm study investigated the effects of progressive resistance training (PRT) on obesity indices in women with PCOS, and the relationship between obesity indices and telomere content. Methods: A total of 45 women with PCOS and 52 with non-PCOS (controls), aged 18 to 37 years, with body mass indexes of 18 to 39.9 kg/m2, performed three 1-hour sessions of PRT per week, for 16 weeks. Before and after PRT, measures included anthropometric indices and regions of interest of fat mass distribution, quantified by dual-energy X-ray absorptiometry, metabolic and hormonal parameters, and telomere content. The general linear mixed models were used to determine the effects of PRT. Results: PRT did reduce the waist-to-height ratio, waist circumference, and the index of conicity among PCOS (P < .01). However, PRT did not influence regions of interest, body mass index, and WHR. After PRT, the telomere content was associated with regions of interest and anthropometric indices in whole group independent of PCOS (P < .05). Conclusion: Resistance exercise improves obesity indices in PCOS, independent of changes in body weight, and the relationship between telomeres and obesity parameters in PCOS remain to be fully clarified.