Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Wayne Stuberg x
Clear All Modify Search
Restricted access

Max J. Kurz, Joan E. Deffeyes, David J. Arpin, Gregory M. Karst and Wayne A. Stuberg

The purpose of this investigation was to evaluate the effect of a lower body positive pressure support system on the joint kinematics and activity of the lower extremity antigravity musculature of adults and children during walking. Adults (age = 25 ± 4 years) and children (age = 13 ± 2 years) walked at a preferred speed and a speed that was based on the Froude number, while 0–80% of their body weight was supported. Electrogoniometers were used to monitor knee and ankle joint kinematics. Surface electromyography was used to quantify the magnitude of the vastus lateralis and gastrocnemius muscle activity. There were three key findings: (1) The lower extremity joint angles and activity of the lower extremity antigravity muscles of children did not differ from those of adults. (2) The magnitude of the changes in the lower extremity joint motion and antigravity muscle activity was dependent upon an interaction between body weight support and walking speed. (3) Lower body positive pressure support resulted in reduced activation of the antigravity musculature, and reduced range of motion of the knee and ankle joints.

Restricted access

Amy K. Hegarty, Max J. Kurz, Wayne Stuberg and Anne K. Silverman

The goal of this pilot study was to characterize the effects of gait training on the capacity of muscles to produce body accelerations and relate these changes to mobility improvements seen in children with cerebral palsy (CP). Five children (14 years ± 3 y; GMFCS I-II) with spastic diplegic CP participated in a 6-week gait training program. Changes in 10-m fast-as-possible walking speed and 6-minute walking endurance were used to assess changes in mobility. In addition, musculoskeletal modeling was used to determine the potential of lower-limb muscles to accelerate the body’s center of mass vertically and forward during stance. The mobility changes after the training were mixed, with some children demonstrating vast improvements, while others appeared to be minimal. However, the musculoskeletal results revealed unique responses for each child. The most common changes occurred in the capacity for the hip and knee extensors to produce body support and the hip flexors to produce body propulsion. These results cannot yet be generalized to the broad population of children with CP, but demonstrate that therapy protocols may be enhanced by modeling analyses. The pilot study results provide motivation for gait training emphasizing upright leg posture, mediolateral balance, and ankle push-off.

Restricted access

Joan E. Deffeyes, Regina T. Harbourne, Wayne A. Stuberg and Nicholas Stergiou

Sitting is one of the first developmental milestones that an infant achieves. Thus measurements of sitting posture present an opportunity to assess sensorimotor development at a young age. Sitting postural sway data were collected using a force plate, and the data were used to train a neural network controller of a model of sitting posture. The trained networks were then probed for sensitivity to position, velocity, and acceleration information at various time delays. Infants with typical development developed a higher reliance on velocity information in control in the anterior-posterior axis, and used more types of information in control in the medial-lateral axis. Infants with delayed development, where the developmental delay was due to cerebral palsy for most of the infants in the study, did not develop this reliance on velocity information, and had less reliance on short latency control mechanisms compared with infants with typical development.