Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Wendy M. Murray x
Clear All Modify Search
Restricted access

Jennifer A. Nichols, Michael S. Bednar, Robert M. Havey and Wendy M. Murray

At the wrist, kinematic coupling (the relationship between flexion-extension and radial-ulnar deviation) facilitates function. Although the midcarpal joint is critical for kinematic coupling, many surgeries, such as 4-corner fusion (4CF) and scaphoidexcision 4-corner fusion (SE4CF), modify the midcarpal joint. This study examines how 4CF and SE4CF influence kinematic coupling by quantifying wrist axes of rotation. Wrist axes of rotation were quantified in 8 cadaveric specimens using an optimization algorithm, which fit a 2-revolute joint model to experimental data. In each specimen, data measuring the motion of the third metacarpal relative to the radius was collected for 3 conditions (nonimpaired, 4CF, SE4CF). The calculated axes of rotation were compared using spherical statistics. The angle between the axes of rotation was used to assess coupling, as the nonimpaired wrist has skew axes (ie, angle between axes approximately 60°). Following 4CF and SE4CF, the axes are closer to orthogonal than those of the nonimpaired wrist. The mean angle (±95% confidence interval) between the axes was 92.6° ± 25.2° and 99.8° ± 22.0° for 4CF and SE4CF, respectively. The axes of rotation defined in this study can be used to define joint models, which will facilitate more accurate computational and experimental studies of these procedures.

Restricted access

Katherine R. Saul, Meghan E. Vidt, Garry E. Gold and Wendy M. Murray

Our purpose was to characterize shoulder muscle volume and isometric moment, as well as their relationship, for healthy middle-aged adults. Muscle volume and maximum isometric joint moment were assessed for 6 functional muscle groups of the shoulder, elbow, and wrist in 10 middle-aged adults (46–60 y, 5M, 5F). Compared with young adults, shoulder abductors composed a smaller percentage of total muscle volume (P = .0009) and there was a reduction in shoulder adductor strength relative to elbow flexors (P = .012). We observed a consistent ordering of moment-generating capacity among functional groups across subjects. Although total muscle volume spanned a 2.3-fold range, muscle volume was distributed among functional groups in a consistent manner across subjects. On average, 72% of the variation in joint moment could be explained by the corresponding functional group muscle volume. These data are useful for improved modeling of upper limb musculoskeletal performance in middle-aged subjects, and may improve computational predictions of function for this group.