Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Xiaoping Chen x
Clear All Modify Search
Restricted access

Hongjun Yu, Xiaoping Chen, Weimo Zhu and Chunmei Cao


To examine the effectiveness of threshold and polarized models in the training organization of Chinese top-level sprint speed skaters using a 2-y quasi-experimental design.


Two years (2004–05 and 2005–06 seasons) of the Chinese national speed-skating team’s daily training load (N = 9; 5 men, 23.6 ± 1.7 y, weight 76.6 ± 4.1 kg, competitive experience 5.0 ± 0.8 y, 500-m time 35.45 ± 0.72 s, 1000-m time 71.18 ± 2.28 s; 4 women, 25.3 ± 6.8 y, 73.0 ± 8.5 kg, 6.3 ± 3.5 y, 37.81 ± 0.46 s, 75.70 ± 0.81 s) were collected and analyzed. Each season’s training load included overall duration (calculated in min and km), frequency (calculated by overall sessions), and training intensity (measured by ear blood lactate or estimated by heart rate), Their performances at national, World Cup, and Olympic competitions during the 2 seasons (2004–06), as well as lactate data measured 15 and 30 min after these competitions, were also collected and analyzed. Based on the lactate data (<2, 2–4, >4 mmol/L), training zones were classified as low, moderate, and high intensity.


The total durations and frequencies of the training load were similar across the seasons, but a threshold-training model distribution was used in 2004–05, and a polarized-training-load organization in 2005–06. Under the polarized-training model, or load organization, all speed skaters’ performance improved and their lactate after competition decreased considerably.


Training-intensity distribution based on a polarized-training model led to the success in top Chinese sprint speed skaters in the 2005–06 season.

Restricted access

Yongming Li, Margot Niessen, Xiaoping Chen and Ulrich Hartmann

Context: Different relative aerobic energy contribution (WAER%) has been reported for the 2 women’s Olympic kayaking disciplines (ie, 200 and 500 m). Purpose: To investigate whether the adopted method of energy calculation influences the value of WAER% during kayaking time trials. Methods: Eleven adolescent female kayakers (age 14 ± 1 y, height 172 ± 4 cm, body mass 65.4 ± 4.2 kg, VO2peak 42.6 ± 4.9 mL·min−1·kg−1, training experience 1.5 ± 0.3 y) volunteered to participate in 1 incremental exercise test and 2 time trials (40 and 120 s) on the kayak ergometer. A portable spirometric system was used to measure gas metabolism. Capillary blood was taken from the ear lobe during and after the tests and analyzed for lactate afterward. The method of modified maximal accumulated oxygen deficit (m-MAOD) and the method based on the fast component of oxygen-uptake off-kinetics (PCr-La-O2) were used to calculate the energy contributions. Results: The anaerobic energy portions from m-MAOD were lower than those from PCr-La-O2 in the 40-s (41.9 ± 8.8 vs 52.8 ± 4.0 kJ, P > .05) and 120-s (64.1 ± 27.9 vs 68.2 ± 10.0 kJ, P > .05) time trials, which induced differences of WAER% between m-MAOD and PCr-La-O2 (36.0% vs 30.0% in 40 s, P > .05; 60.9% vs 57.5% in 120 s, P > .05). Conclusions: The reported different WAER% in women’s Olympic kayaking could be partly attributed to the adopted method of energy calculation (ie, m-MAOD vs PCr-La-O2). A fixed method of energy calculation is recommended during the longitudinal assessment on the relative energy contribution in women’s Olympic kayaking.