Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Yorck O. Schumacher x
Clear All Modify Search
Open access

Sergei Iljukov, Jukka-Pekka Kauppi, Arja L.T. Uusitalo, Juha E. Peltonen and Yorck O. Schumacher

The purpose of this research was to evaluate the performances of female middle- and long-distance runners before and after the implementation of a new antidoping strategy (the Athlete Biological Passport [ABP]) in a country accused of systematic doping. A retrospective analysis of the results of Russian National Championships from 2008 to 2017 was performed. The 8 best female performances for the 800-m, 1500-m, 3000-m steeplechase, 5000-m, and 10,000-m events from the semifinals and finals were analyzed. The yearly number of athletes fulfilling standard qualifications for international competitions was also evaluated. Overall, numbers of athletes banned for doping in 2008–2017 were calculated. As a result, 4 events (800, 1500, 5000 [all P < .001], and 10,000 m [P < .01]) out of 5 showed statistically significant deterioration in the performances when comparing before and after the introduction of the ABP. The 3000-m steeplechase was the only event that did not show statistically significant change. The highest relative decrease in the number of runners who met standard qualification for international competition was for the 5000-m event (46%), followed by 1500-m (42%), 800-m (38%), 10,000-m (17%), and 3000-m steeplechase (1%). In conclusion, implementation of the ABP was followed by a significant reduction in the performance of female runners in a country accused of systematic doping. It can be reasonably speculated that more stringent antidoping testing, more specifically the introduction of the ABP, is a key reason for this reduction.

Restricted access

Torben Pottgiesser, Laura A. Garvican, David T. Martin, Jesse M. Featonby, Christopher J. Gore and Yorck O. Schumacher

Hemoglobin mass (tHb) is considered to be a main factor for sea-level performance after “live high–train low” (LHTL) altitude training, but little research has focused on the persistence of tHb following cessation of altitude exposure. The aim of the case study was to investigate short-term effects of various hematological measures including tHb upon completion of a simulated altitude camp. Five female cyclists spent 26 nights at simulated altitude (LHTL, 16.6 ± 0.4 h/d, 3000 m in an altitude house) where tHb was measured at baseline, at cessation of the camp, and 9 d thereafter. Venous blood measures (hemoglobin concentration, hematocrit, %reticulocytes, serum erythropoietin, ferritin, lactate dehydrogenase, and haptoglobin) were determined at baseline; on day 21 during LHTL; and at days 2, 5, and 9 after LHTL. Hemoglobin mass increased by 5.5% (90% confidence limits [CL] 2.5 to 8.5%, very likely) after the LHTL training camp. At day 9 after simulated LHTL, tHb decreased by 3.0% (90%CL −5.1 to −1.0%, likely). There was a substantial decrease in serum EPO (−34%, 90%CL −50 to −12%) at 2 d after return to sea level and a rise in ferritin (23%, 90%CL 3 to 46%) coupled with a decrease in %reticulocytes (−23%, 90%CL −34 to −9%) between day 5 and 9 after LHTL. Our findings show that following a hypoxic intervention with a beneficial tHb outcome, there may be a high probability of a rapid tHb decrease upon return to normoxic conditions. This highlights a rapid component in red-cell control and may have implications for the appropriate timing of altitude training in relation to competition.

Restricted access

Philo U. Saunders, Christoph Ahlgrim, Brent Vallance, Daniel J. Green, Eileen Y. Robertson, Sally A. Clark, Yorck O. Schumacher and Christopher J. Gore

Purpose:

To quantify physiological and performance effects of hypoxic exposure, a training camp, the placebo effect, and a combination of these factors.

Methods:

Elite Australian and International race walkers (n = 17) were recruited, including men and women. Three groups were assigned: 1) Live High:Train Low (LHTL, n = 6) of 14 h/d at 3000 m simulated altitude; 2) Placebo (n = 6) of 14 h/d of normoxic exposure (600 m); and 3) Nocebo (n = 5) living in normoxia. All groups undertook similar training during the intervention. Physiological and performance measures included 10-min maximal treadmill distance, peak oxygen uptake (VO2peak), walking economy, and hemoglobin mass (Hbmass).

Results:

Blinding failed, so the Placebo group was a second control group aware of the treatment. All three groups improved treadmill performance by approx. 4%. Compared with Placebo, LHTL increased Hbmass by 8.6% (90% CI: 3.5 to 14.0%; P = .01, very likely), VO2peak by 2.7% (-2.2 to 7.9%; P = .34, possibly), but had no additional improvement in treadmill distance (-0.8%, -4.6 to 3.8%; P = .75, unlikely) or economy (-8.2%, -24.1 to 5.7%; P = .31, unlikely). Compared with Nocebo, LHTL increased Hbmass by 5.5% (2.5 to 8.7%; P = .01, very likely), VO2peak by 5.8% (2.3 to 9.4%; P = .02, very likely), but had no additional improvement in treadmill distance (0.3%, -1.9 to 2.5%; P = .75, possibly) and had a decrease in walking economy (-16.5%, -30.5 to 3.9%; P = .04, very likely).

Conclusion:

Overall, 3-wk LHTL simulated altitude training for 14 h/d increased Hbmass and VO2peak, but the improvement in treadmill performance was not greater than the training camp effect.