Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Yuki Inaba x
Clear All Modify Search
Restricted access

Shohei Shibata, Yuki Inaba, Shinsuke Yoshioka and Senshi Fukashiro

This study had two objectives: (a) revealing the difference in finger segments between the conventional and finger models during aimed throwing and (b) examining the central nervous system’s timing control between the wrist torque and finger torque. Participants were seven baseball players. Finger kinetics was calculated by an inverse dynamics method. In the conventional model, wrist flexion torque was smaller than that in the finger model because of the error in ball position approximation. The maximal correlation coefficient between the wrist torque and finger torque was high (r = .85 ± .10), and the time lag at maximal correlation coefficient was small (t = 0.36 ± 3.02 ms). The small timing delay between the wrist torque and finger torque greatly influenced ball trajectory. We conclude that, to stabilize release timing, the central nervous system synchronized the wrist torque and finger torque by feed-forward adjustments.

Restricted access

Yuki Inaba, Shinsuke Yoshioka, Yoshiaki Iida, Dean C. Hay and Senshi Fukashiro

Lateral quickness is a crucial component of many sports. However, biomechanical factors that contribute to quickness in lateral movements have not been understood well. Thus, the purpose of this study was to quantify 3-dimensional kinetics of hip, knee, and ankle joints in side steps to understand the function of lower extremity muscle groups. Side steps at nine different distances were performed by nine male subjects. Kinematic and ground reaction force data were recorded, and net joint torque and work were calculated by a standard inverse-dynamics method. Extension torques and work done at hip, knee, and ankle joints contributed substantially to the changes in side step distances. On the other hand, hip abduction work was not as sensitive to the changes in the side step distances. The main roles of hip abduction torque and work were to accelerate the center of mass laterally in the earlier phase of the movement and to keep the trunk upright, but not to generate large power for propulsion.