Search Results

You are looking at 91 - 100 of 1,184 items for :

Clear All
Restricted access

Ashleigh E. Smith, Roger G. Eston, Belinda Norton and Gaynor Parfitt

Peak oxygen uptake (V̇O2peak) is reliably predicted in young and middle-aged adults using a submaximal perceptually-regulated exercise test (PRET). It is unknown whether older adults can use a PRET to accurately predict V̇O2peak. In this study, the validity of a treadmill-based PRET to predict V̇O2peak was assessed in 24 participants (65.2 ± 3.9 years, 11 males). The PRET required a change in speed or incline corresponding to ratings of perceived exertion (RPE) 9, 11, 13, and 15. Extrapolation of submaximal V̇O2 from the PRET to RPE endpoints 19 and 20 and age-predicted HRmax were compared with measured V̇O2peak. The V̇O2 extrapolated to both RPE19 and 20 over-predicted V̇O2peak (p < .001). However, extrapolating V̇O2 to age-predicted HRmax accurately predicted V̇O2peak (r = .84). Results indicate older adults can use a PRET to predict V̇O2peak by extrapolating V̇O2 from submaximal intensities to an age-predicted HRmax.

Restricted access

Nicholas J. Hanson, Sarah C. Martinez, Erik N. Byl, Rachel M. Maceri and Michael G. Miller

least 48 hours between testing sessions. The first visit included a VO 2 max test and familiarization with the laboratory equipment. During the first visit, the participants were also familiarized with the protocol and the rating of perceived exertion (RPE) scale. The second, third, and fourth visits

Restricted access

Gabriela Fischer, Pedro Figueiredo and Luca P. Ardigò

Purpose:

To investigate physiological performance determinants of the partial laps and an overall 22-km handbiking (HB) time trial in athletes with high paraplegia.

Methods:

Seven male HB athletes with spinal cord injury (lesion levels thoracic 2-8) performed a laboratory maximal incremental test under cardiorespiratory-mechanical monitoring including respiratory-exchange ratio (RER), oxygen uptake (V̇O2), and mechanical power output (PO). Individual first and second ventilatory thresholds (V̇O2VT1 and V̇O2VT2), V̇O2peak, and POpeak were posteriorly identified. Athletes also performed a simulated HB time trial along a 4-lap bike circuit under cardiorespiratory measurement. Overall metabolic cost (C) and %V̇O2peak (ratio of V̇O2 to V̇O2peak) were calculated from race data. Race performance was defined as mean race velocity (v).

Results:

athletes completed the 22-km HB time trial in 45 ± 6 min, at 29.9 ± 3.6 km/h, with %V̇O2peak = 0.86 ± 0.10 and RER = 1.07 ± 0.17. V̇O2peak (r = .89, P = .01), POpeak (r = .85, P = .02), V̇O2VT1 (r = .96, P = .001), V̇O2VT2 (r = .92, P = .003), and C (2nd lap, r = .78; 3rd lap, r = .80; and 4th lap, r = .80) were significantly (P < .05) positively correlated with race performance. Within-subjects correlation coefficient revealed a large and significant (r = .68, P < .001) relationship between %V̇O2peak and v.

Conclusions:

V̇O2peak, POpeak, ventilatory thresholds, %V̇O2peak, and C appeared to be important physiological performance determinants of HB time trial.

Restricted access

Bo Fernhall, Wendy Kohrt, Lee N. Burkett and Steven Walters

This study evaluated the relationship between run performance, lactate threshold (LT), VO2max, and running economy in adolescent boys (n = 11) and girls (n = 10). Subjects completed laboratory tests to establish VO2max, LT, and running economy. The race performance was the finish time from a cross-country meet. The boys exhibited higher VO2max (67.7 vs. 54.6 ml · kg−1 · min−1) and VO2 at LT (61.7 vs. 48.4 ml · kg−1 · min−1) compared with the girls (p < .05), but there was no difference in running economy, peak lactate, or the %VO2max at LT (p > .05). VO2max (r = −.70) and VO2 at LT (r = −.74) were significantly correlated to performance for the boys, but running economy was not (r = .10). For the girls, VO2max (r = −.90), VO2 at LT (r = −.77), and running economy (r = −.86) were all significantly related to performance. LT was important for cross-country run performance. However, VO2max was an equally strong or better predictor than either LT or running economy.

Restricted access

Daniel Muniz-Pumares, Charles Pedlar, Richard J. Godfrey and Mark Glaister

Purpose:

The aim of the study was to determine the effect of supramaximal exercise intensity during constant work-rate cycling to exhaustion on the accumulated oxygen deficit (AOD) and to determine the test–retest reliability of AOD.

Methods:

Twenty-one trained male cyclists and triathletes (mean ± SD for age and maximal oxygen uptake [V̇O2max] were 41 ± 7 y and 4.53 ± 0.54 L/min, respectively) performed initial tests to determine the linear relationship between V̇O2 and power output, and V̇O2max. In subsequent trials, AOD was determined from exhaustive square-wave cycling trials at 105%, 112.5% (in duplicate), 120%, and 127.5% V̇O2max.

Results:

Exercise intensity had an effect (P = .011) on the AOD (3.84 ± 1.11, 4.23 ± 0.96, 4.09 ± 0.87, and 3.93 ± 0.89 L at 105%, 112.5%, 120%, and 127.5% V̇O2max, respectively). Specifically, AOD at 112.5% V̇O2max was greater than at 105% V̇O2max (P = .033) and at 127.5% V̇O2max (P = .022), but there were no differences between the AOD at 112.5% and 120% V̇O2max. In 76% of the participants, the maximal AOD occurred at 112.5% or 120% V̇O2max. The reliability statistics of the AOD at 112.5% V̇O2max, determined as intraclass correlation coefficient and coefficient of variation, were .927 and 8.72%, respectively.

Conclusions:

The AOD, determined from square-wave cycling bouts to exhaustion, peaks at intensities of 112.5–120% V̇O2max. Moreover, the AOD at 112.5% V̇O2max exhibits an 8.72% test–retest reliability.

Restricted access

Anthony D. Mahon and Paul Vaccaro

Whether the point of deflection from linearity of heart rate (HRD) coincides with ventilatory threshold (VT) has not been extensively examined in children. The purpose of this study was to assess the relationship between the VO2 measured at VT and the VO2 measured at HRD. Twenty-two boys with a mean age of 10.7 years (±1.0) performed a graded exercise test to determine VT, HRD, and VO2max. There was no significant difference between mean VO2 (ml/kg/min) at VT and at HRD (33.5±3.5 vs. 34.1±4.4; p>0.05). Linear regression analysis revealed a correlation of r = 0.76 (p<0.01) between the VO2 measured at VT and the VO2 measured at HRD. These results indicate that HRD may be an accurate predictor of VT in most but not all children, and caution should be used when interpreting the significance of HRD.

Restricted access

Don W. Morgan, Wayland Tseh, Jennifer L. Caputo, Ian S. Craig, Daniel J. Keefer and Philip E. Martin

The purpose of this study was to quantify running economy (RE) during level treadmill running in 6-year-old children and to identify the potentially mediating effects of resting oxygen uptake and body fat percentage on sex differences in RE. Resting oxygen uptake (VO2), body fat, and RE at 5 mph were quantified in 15 boys and 20 girls following 30 min of treadmill accommodation. While absolute VO2 and mass-related values of gross and net VO2 were significantly higher in boys compared to girls, gross VO2 expressed relative to fat-free mass was not different between sexes. These results indicate that 6-year-old girls exhibit better RE compared to 6-year-old boys when VO2 is expressed as a function of total body mass. This sex difference in VO2 may reflect an increase in aerobic energy demands associated with the presence of a greater muscle mass in boys.

Restricted access

Stamatis Agiovlasitis, Jeffrey A. McCubbin, Joonkoo Yun, Michael J. Pavol and Jeffrey J. Widrick

This study examined whether the net rate of oxygen uptake (VO2net) and the net oxygen uptake per kilometer (VO2net/km) are affected during walking in adults with Down syndrome (DS) and whether their preferred walking speed (PWS) minimizes the VO2net/km. Respiratory gases were collected as 14 adults with DS and 15 adults without DS completed a series of treadmill walking trials. PWS was measured over 15 meters in a hallway. The VO2net and the VO2net/km were higher in adults with DS than adults without DS. The overground PWS normalized for leg length was the same for both groups and did not appear to minimize the VO2net/km. Thus, adults with DS are less economical during walking than adults without DS. The overground PWS does not minimize the metabolic cost during treadmill walking.

Restricted access

Neil Armstrong and Joanne R. Welsman

Over 60 years ago, Robinson published the first investigation of boys’ aerobic fitness; almost 50 years ago, Åstrand conducted his pioneering studies of both sexes. Twenty four percent of the papers published during the first 10 years of Pediatric Exercise Science (1989-98) involved the determination of peak V̇O2. Yet, the interpretation of aerobic fitness during childhood and adolescence is still shrouded with controversy. In this paper we review peak V̇O2 in relation to age, growth, maturation, and sex. We describe the increase in peak V̇O2 with age, challenge the traditional interpretation of peak V̇O2 during growth, demonstrate the independent contribution of maturation to peak V̇O2, and address the progressive divergence of boys’ and girls’ peak V̇O2, during childhood and adolescence.

Open access

David M. Shaw, Fabrice Merien, Andrea Braakhuis, Daniel Plews, Paul Laursen and Deborah K. Dulson

least 12 months and without a history of recurrent gastrointestinal symptoms volunteered to participate in the study (age, 26.7 ± 5.2 years; body mass, 69.6 ± 8.4 kg; height, 1.82 ± 0.09 m; body mass index, 21.2 ± 1.5 kg/m 2 ; VO 2 peak, 63.9 ± 2.5 ml·kg −1 ·min −1 ; W max,  389.3 ± 50.4 W; hours