Search Results

You are looking at 91 - 100 of 259 items for :

  • "ergogenic" x
Clear All
Restricted access

Blair Crewther, Konrad Witek, Paweł Draga, Piotr Zmijewski and Zbigniew Obmiński

supplementation (inclusive of blended agents containing DAA) does not afford any ergogenic benefits at recommended, or higher, dosages. Acknowledgments The authors would like to thank the athletes and coach for their contribution to this project. The study was designed by B. Crewther, Z. Obmiński, and P

Restricted access

Kirsty A. Fairbairn, Ingrid J.M. Ceelen, C. Murray Skeaff, Claire M. Cameron and Tracy L. Perry

vitamin D sufficient rugby union players, but did not significantly affect our primary outcome of 30-m sprint time. Vitamin D supplementation does not appear to be ergogenic in this group of athletes, and there is no compelling evidence that athletes require more vitamin D to improve performance beyond

Restricted access

Jana Hagen, Carl Foster, Jose Rodríguez-Marroyo, Jos J. de Koning, Richard P. Mikat, Charles R. Hendrix and John P. Porcari

Music is widely used as an ergogenic aid in sport, but there is little evidence of its effectiveness during closedloop athletic events. In order to determine the effectiveness of music as an ergogenic aid, well-trained and task-habituated cyclists performed 10-km cycle time trials either while listening to self-selected motivational music or with auditory input blocked. There were no statistically significant differences in performance time or physiological or psychological markers related to music (time-trial duration 17.75 ± 2.10 vs 17.81 ± 2.06 min, mean power output 222 ± 66 vs 220 ± 65 W, peak heart rate 184 ± 9 vs 183 ± 8 beats/min, peak blood lactate 12.1 ± 2.6 vs 11.9 ± 2.1 mmol/L, and final rating of perceived exertion 8.4 ± 1.5 vs 8.5 ± 1.6). It is concluded that during exercise at competitive intensity, there is no meaningful effect of music on either performance or physiology.

Restricted access

Valerie J. Wirth and Joe Gieck

Growth hormone is one of the many dangerous and illegal ergogenic aids currently used by athletes. In those who suffer from a growth hormone deficiency, supplementation does produce positive results: Muscle volume increases while adipose tissue volume is significantly reduced. Growth hormone supplementation can also lead to strength increases in the deficient population (2, 6, 13) as well as in the elderly population (16, 18, 25). In healthy young men, growth hormone supplementation has been shown to increase fat-free mass and to decrease fat mass. However, these changes are not accompanied by strength gains (5, 7, 23, 24). This finding, coupled with the numerous side effects associated with the drug, presents a strong case for athletes to abandon its use as an ergogenic aid.

Restricted access

J. Matt Green, P. Jason Wickwire, John R. McLester, Shawn Gendle, Geoffrey Hudson, Robert C. Pritchett and C. Matt Laurent

Context:

Ergogenic effects of caffeine on aerobic or endurance exercise are well documented. Conversely, the ergogenic value of caffeine on high-intensity, primarily anaerobic performance is not well understood even though the proposed mechanisms of action for caffeine permit a strong theoretical basis for application to this type of exercise.

Purpose:

This study examined effects of caffeine (Ca) on number repetitions (reps), ratings of perceived exertion (RPE), and peak heart rate (PHR) during resistance-training exercise with reps performed to volitional failure.

Methods:

Subjects (N = 17) were tested for 10-rep maximum in bench press (BP) and leg press (LP). In sessions 2 and 3, Ca (~6 mg/kg) or placebo (Pl) was ingested 1 hr beforehand in a double-blind manner and counterbalanced order. Subjects performed 3 sets to failure (BP and LP) with reps, PHR, and RPE recorded each set. Repeated-measures ANOVAs, 2 (trial) × 3 (set), were used to analyze dependent measures with the Tukey honestly significant difference used when necessary as the post hoc test.

Results:

In BP, no significant differences (Ca vs Pl) were observed (reps, RPE, PHR). During set 3 of LP training, Ca was associated with significantly higher reps (12.5 ± 4.2 vs 9.9 ± 2.6) and PHR (158.5 ± 11.9 vs 151.8 ± 13.2). No signifcant RPE differences were found during LP.

Conclusions:

The findings of similar RPE concurrent with higher reps suggest that caffeine can blunt pain responses, possibly delaying fatigue in high-intensity resistance training. Ergogenic effects might be limited to the later sets in a resistance-training session. Further research is warranted regarding ergogenic effects of caffeine during resistance training and potential mechanisms of action.

Restricted access

Mark Glaister

Tests of repeated-sprint ability provide a simple way to evaluate the basic physical characteristics of speed and endurance necessary to excel in various multiple-sprint sports. Furthermore, such tests help overcome the complications associated with field-based evaluations of this type of exercise. Nevertheless, despite over 40 y of research, many issues regarding our understanding of multiple-sprint work remain unresolved. This commentary aims to raise awareness of issues relating to methodology, physiological responses, and the effectiveness of various ergogenic and training strategies; to promote a greater understanding; and to drive future research.

Restricted access

Francisco Javier Diaz-Lara, Juan del Coso, Javier Portillo, Francisco Areces, Jose Manuel García and Javier Abián-Vicén

Context:

Although caffeine is one of the most commonly used substances in combat sports, information about its ergogenic effects on these disciplines is very limited.

Purpose:

To determine the effectiveness of ingesting a moderate dose of caffeine to enhance overall performance during a simulated Brazilian jiu-jitsu (BJJ) competition.

Methods:

Fourteen elite BJJ athletes participated in a double-blind, placebo-controlled experimental design. In a random order, the athletes ingested either 3 mg/kg body mass of caffeine or a placebo (cellulose, 0 mg/kg) and performed 2 simulated BJJ combats (with 20 min rest between them), following official BJJ rules. Specific physical tests such as maximal handgrip dynamometry, maximal height during a countermovement jump, permanence during a maximal static-lift test, peak power in a bench-press exercise, and blood lactate concentration were measured at 3 specific times: before the first combat and immediately after the first and second combats. The combats were video-recorded to analyze fight actions.

Results:

After the caffeine ingestion, participants spent more time in offensive actions in both combats and revealed higher blood lactate values (P < .05). Performance in all physical tests carried out before the first combat was enhanced with caffeine (P < .05), and some improvements remained after the first combat (eg, maximal static-lift test and bench-press exercise; P < .05). After the second combat, the values in all physical tests were similar between caffeine and placebo.

Conclusions:

Caffeine might be an effective ergogenic aid for improving intensity and physical performance during successive elite BJJ combats.

Restricted access

Angela L. Spence, Marc Sim, Grant Landers and Peter Peeling

Both caffeine (CAF) and pseudoephedrine (PSE) are proposed to be central nervous system stimulants. However, during competition, CAF is a permitted substance, whereas PSE is a banned substance at urinary levels >150 μg·ml−1. As a result, this study aimed to compare the effect of CAF versus PSE use on cycling time trial (TT) performance to explore whether the legal stimulant was any less ergogenic than the banned substance. Here, 10 well-trained male cyclists or triathletes were recruited for participation. All athletes were required to attend the laboratory on four separate occasions—including a familiarization trial and three experimental trials, which required participants to complete a simulated 40 km (1,200 kJ) cycling TT after the ingestion of either 200 mg CAF, 180 mg PSE or a nonnutritive placebo (PLA). The results showed that the total time taken and the mean power produced during each TT was not significantly different (p > .05) between trials, despite a 1.3% faster overall time (~57 s) after CAF consumption. Interestingly, the time taken to complete the second half of the TT was significantly faster (p < .05) in CAF as compared with PSE (by 99 s), with magnitude based inferences suggesting a 91% beneficial effect of CAF during the second half of the TT. This investigation further confirms the ergogenic benefits of CAF use during TT performances and further suggests this legal CNS stimulant has a better influence than a supra-therapeutic dose of PSE.

Restricted access

Joelle Leonie Flueck, Samuel Mettler and Claudio Perret

The aim of this study was to investigate whether caffeine and/or sodium citrate have an ergogenic effect on the 1,500-m exercise performance in elite wheelchair athletes. A placebo-controlled, randomized, cross-over and double-blind study design was conducted with the four treatments placebo, caffeine, sodium citrate and the combination of caffeine and sodium citrate. Nine healthy, elite wheelchair-racing athletes (median: [min; max] age: 28 y [23; 54]; height: 173 cm [165; 188]; weight: 62.9 kg [48.9; 68.4], category T53/54) completed the study. All athletes were national team members, including several Paralympic Games, World and European Championship medalists. The athletes performed a 1,500-m time trial four times on a wheelchair training roller. Time to complete 1,500-m, pH, bicarbonate and sodium concentration as well as lactate concentration were measured. The time to complete 1,500-m was not significantly different between the four treatments (placebo: 170.6 s [141.7; 232.0]; caffeine: 179.5 s [134.8; 239.6]; sodium citrate: 178.3 s [136.4; 247.1]; combination: 177.6 s [136.1; 256.2]). However, pH and bicarbonate concentrations were significantly increased with sodium citrate ingestion compared with placebo. Moreover, maximal lactate concentrations were significantly higher in the caffeine and the combination treatment compared with placebo. The supplementation with sodium citrate and/or caffeine did not provide an ergogenic effect on the 1,500-m exercise performance in wheelchair elite athletes.

Restricted access

Hans Braun, Karsten Koehler, Hans Geyer, Jens Kleinert, Joachim Mester and Wilhelm Schänzer

Little is known about the prevalence and motives of supplement use among elite young athletes who compete on national and international levels. Therefore, the current survey was performed to assess information regarding the past and present use of dietary supplements among 164 elite young athletes (16.6 ± 3.0 years of age). A 5-page questionnaire was designed to assess their past and present (last 4 weeks) use of vitamins, minerals, carbohydrate, protein, and fat supplements; sport drinks; and other ergogenic aids. Furthermore, information about motives, sources of advice, supplement sources, and supplement contamination was assessed. Eighty percent of all athletes reported using at least 1 supplement, and the prevalence of use was significantly higher in older athletes (p < .05). Among supplement users, minerals, vitamins, sport drinks, energy drinks, and carbohydrates were most frequently consumed. Only a minority of the athletes declared that they used protein/amino acids, creatine, or other ergogenic aids. Major motives for supplement use were health related, whereas performance enhancement and recommendations by others were less frequently reported. Supplements were mainly obtained from parents or by athletes themselves and were mostly purchased in pharmacies, supermarkets, and health-food stores. Among all athletes, only 36% were aware of the problem of supplement contamination. The survey shows that supplement use is common and widespread among German elite young athletes. This stands in strong contrast to recommendations by leading sport organizations against supplement use by underage athletes.