Search Results

You are looking at 91 - 100 of 376 items for :

  • "physiologic responses" x
Clear All
Restricted access

Claire Rechichi, Brian Dawson and Carmel Goodman

Some reports suggest variation in physiological responses and athletic performance, for female athletes at specific phases of the menstrual cycle. However, inconsistent findings are common due to the inappropriate verification of menstrual cycle phase, small subject numbers, high intra- and interindividual variability in estrogen and progesterone concentration, and the pulsatile secretion of these hormones. Therefore, the oral contraceptive (OC) cycle may provide a more stable environment in which to evaluate the acute effect of reproductive hormones on physiological variables and exercise performance. To date, most of the OC research has compared differences between OC use and nonuse, and few researchers have examined within-cycle effects of the OC. It is also apparent that OC use is becoming far more prevalent in athletes; hence the effect of the different exogenous and endogenous hormonal profiles on athletic performance should be investigated. Research to date identifies potential for variation in aerobic performance, anaerobic capacity, anaerobic power and reactive strength throughout an OC cycle. The purpose of this review is to present and evaluate the current literature on the physiology of exercise and athletic performance during the OC cycle.

Restricted access

Philip R. Hayes, Kjell van Paridon, Duncan N. French, Kevin Thomas and Dan A. Gordon

Purpose:

The aim of this study was to develop a laboratory-based treadmill simulation of the on-course physiological demands of an 18-hole round of golf and to identify the underlying physiological responses.

Methods:

Eight amateur golfers completed a round of golf during which heart rate (HR), steps taken, and global positioning system (GPS) data were assessed. The GPS data were used to create a simulated discontinuous round on a treadmill. Steps taken and HR were recorded during the simulated round.

Results:

During the on-course round, players covered a mean (±SD) of 8,251 ± 450 m, taking 12,766 ± 1,530 steps. The mean exercise intensity during the on-course round was 31.4 ± 9.3% of age-predicted heart rate reserve (%HRR) or 55.6 ± 4.4% of age-predicted maximum HR (%HRmax). There were no significant differences between the simulated round and the on-course round for %HRR (P = .537) or %HR max (P = .561) over the entire round or for each individual hole. Furthermore, there were no significant differences between the two rounds for steps taken. Typical error values for steps taken, HR, %HRmax, and %HRR were 1,083 steps, ±7.6 b·min-1, ±4.5%, and ±8.1%, respectively.

Conclusion:

Overall, the simulated round of golf successfully recreated the demands of an on-course round. This simulated round could be used as a research tool to assess the extent of fatigue during a round of golf or the impact of various interventions on golfers.

Restricted access

Jon L. Oliver, Neil Armstrong and Craig A. Williams

Purpose:

The purpose of the study was to assess the reliability and validity of a newly developed laboratory protocol to measure prolonged repeated-sprint ability (RSA) during soccer-specific exercise.

Methods:

To assess reliability, 12 youth soccer players age 15.2 ± 0.3 y performed 2 trials of a soccer-specific intermittent-exercise test (SSIET) separated by 3 months. The test was performed on a nonmotorized treadmill. A separate sample of 12 youth soccer players (15.2 ± 0.3 y) completed the SSIET while simultaneously HR, VO2, and blood lactate (BLa) were monitored. The SSIET was designed to replicate the demands of competing in one half of a soccer match while sprint performance was monitored. The test included a 5-s sprint every 2 min.

Results:

The mean coefficient of variation was 2.5% for the total distance covered during the SSIET and 3.8% for the total distance sprinted; measures of power output were less reliable (>5.9%). Participants covered 4851 ± 251 m during the SSIET, working at an average intensity of 87.5% ± 3.2% HRpeak and 70.2% ± 3.1% VO2peak, with ~7mmol/L BLa accumulation. A significant reduction (P < .05) in sprint performance was ob served over the course of the SSIET.

Conclusion:

The SSIET provided a reliable method of assessing prolonged RSA in the laboratory. The distance covered and the physiological responses during the SSIET successfully recreated the demands of competing in a soccer match.

Restricted access

Amber Dallman, Eydie Abercrombie, Rebecca Drewette-Card, Maya Mohan, Michael Ray and Brian Ritacco

Background:

Physical activity has emerged as a vital area of public health. This emerging area of public health practice has created a need to develop practitioners who can address physical activity promotion using population-based approaches. Variations in physical activity practitioners' educations and backgrounds warranted the creation of minimal standards to establish the competencies needed to address physical activity as a public health priority.

Methods:

The content knowledge of physical activity practitioners tends to fall into 2 separate areas—population-based community health education and individually focused exercise physiology. Competencies reflect the importance of a comprehensive approach to physical activity promotion, including areas of community health while also understanding the physiologic responses occurring at the individual level.

Results:

Competencies are organized under the Center for Disease Control and Prevention's 5 benchmarks for physical activity and public health practice.

Conclusions:

The greatest impact on physical activity levels may be realized from a well-trained workforce of practitioners. Utilization of the competencies will enable the physical activity practitioner to provide technical assistance and leadership to promote, implement, and oversee evaluation of physical activity interventions.

Restricted access

Melitta A. McNarry, Joanne R. Welsman and Andrew M. Jones

The influence of training status on pulmonary VO2 recovery kinetics, and its interaction with maturity, has not been investigated in young girls. Sixteen prepubertal (Pre: trained (T, 11.4 ± 0.7 years), 8 untrained (UT, 11.5 ± 0.6 years)) and 8 pubertal (Pub: 8T, 14.2 ± 0.7 years; 8 UT, 14.5 ± 1.3 years) girls completed repeat transitions from heavy intensity exercise to a baseline of unloaded exercise, on both an upper and lower body ergometer. The VO2 recovery time constant was significantly shorter in the trained prepubertal and pubertal girls during both cycle (Pre: T, 26 ± 4 vs. UT, 32 ± 6; Pub: T, 28 ± 2 vs. UT, 35 ± 7 s; both p < .05) and upper body exercise (Pre: T, 26 ± 4 vs. UT, 35 ± 6; Pub: T, 30 ± 4 vs. UT, 42 ± 3 s; both p < .05). No interaction was evident between training status and maturity. These results demonstrate the sensitivity of VO2 recovery kinetics to training in young girls and challenge the notion of a “maturational threshold” in the influence of training status on the physiological responses to exercise and recovery.

Restricted access

W. Jack Rejeski, Edward Gregg, Amy Thompson and Michael Berry

In this investigation, we examined the role of acute aerobic exercise (AE) in buffering physiological responses to mental stress. Twelve trained cyclists participated in three counterbalanced treatment conditions on separate days: attention control, light exercise (50% of VO2max for 30 min), and heavy exercise (80% of VO2max for 60 min). After a 30-min rest period following each condition, subjects completed a modified Stroop task. Blood pressure (BP) and heart rate (HR) were monitored for (a) baseline responses, (b) task reactivity, and (c), 5 min of recovery following the stressor. Mean arterial pressure (MAP) revealed that reactivity was attenuated by both heavy- and light-exercise conditions as compared to responses in the control condition. Moreover, heavy exercise was more effective in reducing MAP reactivity than light exercise. Systolic BP during the task was significantly higher in the control and light-exercise conditions than following heavy exercise; diastolic BP was significantly higher in the control condition than in either exercise condition. There were no significant effects for HR. These results suggest that there is a dose-response relationship between acute AE and the attenuation of psychophysiological reactivity during stress.

Restricted access

Olivier Rey, Jean-Marc Vallier, Caroline Nicol, Charles-Symphorien Mercier and Christophe Maïano

Purpose:

This study examined the effects of a five-week intervention combining vigorous interval training (VIT) with diet among twenty-four obese adolescents. Fourteen girls and ten boys (aged 14–15) schooled in a pediatric rehabilitation center participated.

Methods:

The VIT intensity was targeted and remained above 80% of maximal heart rate (HR) and over six kilocalories per minute. Pre- and postintervention measures were body composition (BMI, weight, body fat percentage), physical self-perceptions (PSP), physical fitness (6-min walking distance and work) and its associated physiological responses (HRpeak and blood lactate concentration). A series of two-way analyses of variance or covariance controlling for weight loss were used to examine the changes.

Results:

Significant improvements were found in body composition, physical fitness and PSP (endurance, activity level, sport competence, global physical self-concept and appearance). In addition, boys presented higher levels of perceived strength and global physical self-concept than girls. Finally, there was a significant increase in perceived endurance, sport competence, and global physical self-concept in girls only.

Conclusion:

This five-week VIT program combined with diet represents an effective means for improving body composition, physical fitness, and PSP in obese adolescents, the effects on PSP being larger among girls.

Restricted access

Mark Waldron and Aron Murphy

This study aimed to identify characteristics of match performance and physical ability that discriminate between elite and subelite under-14 soccer players. Players were assessed for closed performance and movement, physiological responses, and technical actions during matches. Elite players covered more total m·min−1 (115.7 ± 6.6 cf. 105.4 ± 7.7 m·min−1) and high-intensity m·min−1 (elite = 14.5 ± 2.3 cf. 11.5 ± 3.7 m·min−1) compared with subelite players. Elite players also attempted more successful (0.41 ± 0.11 cf. 0.18 ± 0.02) and unsuccessful ball retentions·min−1 (0.14 ± 0.04 cf. 0.06 ± 0.02) compared with subelite players. Elite players were faster over 10 m (1.9 ± 0.1 cf. 2.3 ± 0.2 s) and faster dribblers (16.4 ± 1.4 cf. 18.2 ± 1.1 s) compared with subelite players. Speed (10 m) and successful ball retention·min−1 contributed to a predictive model, explaining 96.8% of the between-group variance. The analysis of match performance provides a more thorough understanding of the factors underlying talent among youth soccer players.

Restricted access

Florian Engel, Sascha Härtel, Jana Strahler, Matthias Oliver Wagner, Klaus Bös and Billy Sperlich

This study aimed to determine the effects of a single high-intensity interval training (HIIT) session on salivary cortisol (SC) levels, physiological responses, and performance in trained boys and men. Twenty-three boys (11.5 ± 0.8 years) and 25 men (29.7 ± 4.6 years) performed HIIT (4 consecutive Wingate Anaerobic Tests). SC in boys and men increased after HIIT from 5.55 ± 3.3 nmol/l to 15.13 ± 9.7 nmol/l (+173%) and from 7.07 ± 4.7 nmol/l to 19.19 ± 12.7 nmol/l (+171%), respectively (p < .01). Pretest SC as well as posttest changes were comparable in both groups (both p < .01). Peak blood lactate concentration was significantly lower in boys (12.6 ± 3.5 mmol/l) than in men (16.3 ± 3.1 mmol/l; p < .01). Throughout the HIIT, mean heart rates in boys were higher (p < .001) but relative peak oxygen uptake (ml·min−1·kg−1; p < .05) and performance were lower (p < .001) in boys than in men. HIIT in young athletes is associated with a higher activation of the hormonal stress axis than other types of exercise regimes as described in the literature. This study is the first to show a pronounced SC increase to HIIT in trained boys accompanied by elevated levels of blood lactate concentrations and heart rate suggesting a high cardio-respiratory, metabolic, and hormonal response to HIIT in 11-year-old boys.

Restricted access

Brian Klucinec, Craig Denegar and Rizwan Mahmood

During the administration of therapeutic ultrasound, the amount of pressure at the sound head-tissue interface may affect the physiological response to and the outcome of treatment. Speed of sonification; size of the treatment area; frequency, intensity, and type of wave; and coupling media are important parameters in providing the patient with an appropriate ultrasound treatment. Pressure variations affect ultrasound transmissivity, yet pressure differences have been virtually unexplored. The purpose of this study was to assess the effects of sound head pressure on acoustic transmissivity. Three trials were conducted whereby pig tissue was subjected to increased sound head pressures using manufactured weights. The weights were added in 100 g increments, starting with 200 g and finishing with 1,400 g. Increased pressure on the transmitting transducer did affect acoustic transmissivity; acoustic energy transmission was increased from 200 g (0.44 lb) up to and optimally at 600 g (1.32 lb). However, there was decreased transmissivity from 700 to 1, 400 g (1.54 to 3.00 lb).