Search Results

You are looking at 91 - 100 of 365 items for :

  • "physiologic responses" x
Clear All
Restricted access

Hassane Zouhal, Abderraouf Ben Abderrahman, Jacques Prioux, Beat Knechtle, Lotfi Bouguerra, Wiem Kebsi and Timothy D. Noakes

Purpose:

To determine the effect of drafting on running time, physiological response, and rating of perceived exertion (RPE) during 3000-m track running.

Methods:

Ten elite middle- and long-distance runners performed 3 track-running sessions. The 1st session determined maximal oxygen uptake and maximal aerobic speed using a lightweight ambulatory respiratory gasexchange system (K4B2). The 2nd and the 3rd tests consisted of nondrafting 3000-m running (3000-mND) and 3000-m running with drafting for the 1st 2000 m (3000-mD) performed on the track in a randomized counterbalanced order.

Results:

Performance during the 3000-mND (553.59 ± 22.15 s) was significantly slower (P < .05) than during the 3000-mD (544.74 ± 18.72 s). Cardiorespiratory responses were not significantly different between the trials. However, blood lactate concentration was significantly higher (P < .05) after the 3000-mND (16.4 ± 2.3 mmol/L) than after the 3000-mD (13.2 ± 5.6 mmol/L). Athletes perceived the 3000-mND as more strenuous than the 3000-mD (P < .05) (RPE = 16.1 ± 0.8 vs 13.1 ± 1.3). Results demonstrate that drafting has a significant effect on performance in highly trained runners.

Conclusion:

This effect could not be explained by a reduced energy expenditure or cardiorespiratory effort as a result of drafting. This raises the possibility that drafting may aid running performance by both physiological and nonphysiological (ie, psychological) effects.

Restricted access

Kelly R. Rice, Catherine Gammon, Karin Pfieffer and Stewart Trost

Purpose:

The OMNI perceived exertion scale was developed for children to report perceived effort while performing physical activity; however no studies have formally examined age-related differences in validity. This study evaluated the validity of the OMNI-RPE in 4 age groups performing a range of lifestyle activities.

Methods:

206 participants were stratified into four age groups: 6-8 years (n = 42), 9-10 years (n = 46), 11-12 years (n = 47), and 13-15 years (n = 71). Heart rate and VO2 were measured during 11 activity trials ranging in intensity from sedentary to vigorous. After each trial, participants reported effort from the OMNI walk/run scale. Concurrent validity was assessed by calculating within-subject correlations between OMNI ratings and the two physiological indices.

Results:

The average correlation between OMNI ratings and VO2 was 0.67, 0.77, 0.85, and 0.87 for the 6-8, 9-10, 11-12 and 13-15 y age groups, respectively.

Conclusion:

The OMNI RPE scale demonstrated fair to good evidence of validity across a range of lifestyle activities among 6- to 15-year-old children. The validity of the scale appears to be developmentally related with RPE reports closely reflecting physiological responses among children older than 8 years.

Restricted access

Florian Engel, Sascha Härtel, Jana Strahler, Matthias Oliver Wagner, Klaus Bös and Billy Sperlich

This study aimed to determine the effects of a single high-intensity interval training (HIIT) session on salivary cortisol (SC) levels, physiological responses, and performance in trained boys and men. Twenty-three boys (11.5 ± 0.8 years) and 25 men (29.7 ± 4.6 years) performed HIIT (4 consecutive Wingate Anaerobic Tests). SC in boys and men increased after HIIT from 5.55 ± 3.3 nmol/l to 15.13 ± 9.7 nmol/l (+173%) and from 7.07 ± 4.7 nmol/l to 19.19 ± 12.7 nmol/l (+171%), respectively (p < .01). Pretest SC as well as posttest changes were comparable in both groups (both p < .01). Peak blood lactate concentration was significantly lower in boys (12.6 ± 3.5 mmol/l) than in men (16.3 ± 3.1 mmol/l; p < .01). Throughout the HIIT, mean heart rates in boys were higher (p < .001) but relative peak oxygen uptake (ml·min−1·kg−1; p < .05) and performance were lower (p < .001) in boys than in men. HIIT in young athletes is associated with a higher activation of the hormonal stress axis than other types of exercise regimes as described in the literature. This study is the first to show a pronounced SC increase to HIIT in trained boys accompanied by elevated levels of blood lactate concentrations and heart rate suggesting a high cardio-respiratory, metabolic, and hormonal response to HIIT in 11-year-old boys.

Restricted access

Naiandra Dittrich, Ricardo Dantas de Lucas, Ralph Beneke and Luiz Guilherme Antonacci Guglielmo

The purpose of this study was to determine and compare the time to exhaustion (TE) and the physiological responses at continuous and intermittent (ratio 5:1) maximal lactate steady state (MLSS) in well-trained runners. Ten athletes (32.7 ± 6.9 y, VO2max 61.7 ± 3.9 mL · kg−1 · min−1) performed an incremental treadmill test, three to five 30-min constant-speed tests to determine the MLSS continuous and intermittent (5 min of running, interspaced by 1 min of passive rest), and 2 randomized TE tests at such intensities. Two-way ANOVA with repeated measures was used to compare the changes in physiological variables during the TE tests and between continuous and intermittent exercise. The intermittent MLSS velocity (MLSSint = 15.26 ± 0.97 km/h) was higher than in the continuous model (MLSScon = 14.53 ± 0.93 km/h), while the TE at MLSScon was longer than MLSSint (68 ± 11 min and 58 ± 15 min, P < .05). Regarding the cardiorespiratory responses, VO2 and respiratory-exchange ratio remained stable during both TE tests while heart rate, ventilation, and rating of perceived exertion presented a significant increase in the last portion of the tests. The results showed a higher tolerance to exercising during MLSScon than during MLSSint in trained runners. Thus, the training volume of an extensive interval session (ratio 5:1) designed at MLSS intensity should take into consideration this higher speed at MLSS and also the lower TE than with continuous exercise.

Restricted access

Gi Broman, Miguel Quintana, Margareta Engardt, Lennart Gullstrand, Eva Jansson and Lennart Kaijser

The aim of the study was to examine submaximal and maximal physiological responses and perceived exertion during deep-water running with a vest compared with the responses during treadmill running in healthy elderly women. Eleven healthy women 70 ± 2 years old participated. On two different occasions they performed a graded maximal exercise test on a treadmill on land and a graded maximal exercise test in water wearing a vest. At maximal work the oxygen uptake was 29% lower (p < .05), the heart rate was 8% lower (p < .05), and the ventilation was 16% lower (p < .05) during deep-water running than during treadmill running. During submaximal absolute work the heart rate was higher during deep-water running than during treadmill running for the elderly women. The participants had lower maximal oxygen uptake, heart rate, ventilation, respiratory-exchange ratio, and rate of perceived exertion during maximal deep-water running with a vest than during maximal treadmill running. These responses were, however, higher during submaximal deep-water running than during treadmill running.

Restricted access

Melitta A. McNarry, Joanne R. Welsman and Andrew M. Jones

The influence of training status on pulmonary VO2 recovery kinetics, and its interaction with maturity, has not been investigated in young girls. Sixteen prepubertal (Pre: trained (T, 11.4 ± 0.7 years), 8 untrained (UT, 11.5 ± 0.6 years)) and 8 pubertal (Pub: 8T, 14.2 ± 0.7 years; 8 UT, 14.5 ± 1.3 years) girls completed repeat transitions from heavy intensity exercise to a baseline of unloaded exercise, on both an upper and lower body ergometer. The VO2 recovery time constant was significantly shorter in the trained prepubertal and pubertal girls during both cycle (Pre: T, 26 ± 4 vs. UT, 32 ± 6; Pub: T, 28 ± 2 vs. UT, 35 ± 7 s; both p < .05) and upper body exercise (Pre: T, 26 ± 4 vs. UT, 35 ± 6; Pub: T, 30 ± 4 vs. UT, 42 ± 3 s; both p < .05). No interaction was evident between training status and maturity. These results demonstrate the sensitivity of VO2 recovery kinetics to training in young girls and challenge the notion of a “maturational threshold” in the influence of training status on the physiological responses to exercise and recovery.

Restricted access

L. Christopher Eschbach, Michael J. Webster, Joseph C. Boyd, Patrick D. McArthur and Tammy K. Evetovich

It has been suggested that Eleutherococcus senticosus (ES). also known as Siberian ginseng or ciwuija. increases fat utilization in humans. The purpose of this study was to examine the physiological responses to supplementation with ES in endurance cyclists. Using arandomized. double-blind crossover design. 9 highly-trained men (28 ± 2 years. V̇O2max 57.3±2.0 ml · kg−1 · min−1) cycled for 120 min at 60% V̇O2max followed by a simulated 10-km lime trial. Diet was controlled, and ES (1,200 mg · day−1) or a placebo (P) were administered for 7 days prior to each of the two trials. Oxygen consumption, respiratory exchange ratio, and heart rate were recorded every 30 min, and rating of perceived exertion. plasma [lactate], and plasma [glucose j were recorded every 20 min during the 120 min of steady state cycling. There were no significant differences (p > .05) between the ES and P groups at any steady-state time interval or during the cycling time trial (ES = 18.10 ± 0.42, P = 17.83 ± 0.47 min). In contrast with previous reports, the results of this study suggest that ES supplementation does not alter steady-state substrate utilization or 10-km cycling performance time.

Restricted access

Claire Rechichi, Brian Dawson and Carmel Goodman

Some reports suggest variation in physiological responses and athletic performance, for female athletes at specific phases of the menstrual cycle. However, inconsistent findings are common due to the inappropriate verification of menstrual cycle phase, small subject numbers, high intra- and interindividual variability in estrogen and progesterone concentration, and the pulsatile secretion of these hormones. Therefore, the oral contraceptive (OC) cycle may provide a more stable environment in which to evaluate the acute effect of reproductive hormones on physiological variables and exercise performance. To date, most of the OC research has compared differences between OC use and nonuse, and few researchers have examined within-cycle effects of the OC. It is also apparent that OC use is becoming far more prevalent in athletes; hence the effect of the different exogenous and endogenous hormonal profiles on athletic performance should be investigated. Research to date identifies potential for variation in aerobic performance, anaerobic capacity, anaerobic power and reactive strength throughout an OC cycle. The purpose of this review is to present and evaluate the current literature on the physiology of exercise and athletic performance during the OC cycle.

Restricted access

Matthew T. Wittbrodt, Mindy Millard-Stafford, Ross A. Sherman and Christopher C. Cheatham

Purpose:

The impact of mild hypohydration on physiological responses and cognitive performance following exercise-heat stress (EHS) were examined compared with conditions when fluids were ingested ad libitum (AL) or replaced to match sweat losses (FR).

Methods:

Twelve unacclimatized, recreationally-active men (22.2 ± 2.4 y) completed 50 min cycling (60%VO2peak) in the heat (32°C; 65% RH) under three conditions: no fluid (NF), AL, and FR. Before and after EHS, a cognitive battery was completed: Trail making, perceptual vigilance, pattern comparison, match-to-sample, and letter-digit recognition tests.

Results:

Hypohydration during NF was greater compared with AL and FR (NF: -1.5 ± 0.6; AL: -0.3 ± 0.8; FR: -0.1 ± 0.3% body mass loss) resulting in higher core temperature (by 0.4, 0.5 °C), heart rate (by 13 and 15 b·min-1), and physiological strain (by 1.3, 1.5) at the end of EHS compared with AL and FR, respectively. Cognitive performance (response time and accuracy) was not altered by fluid condition; however, mean response time improved (p < .05) for letter-digit recognition (by 56.7 ± 85.8 ms or 3.8%; p < .05) and pattern comparison (by 80.6 ± 57.4 ms or 7.1%; p < .001), but mean accuracy decreased in trail making (by 1.2 ± 1.4%; p = .01) after EHS (across all conditions).

Conclusions:

For recreational athletes, fluid intake effectively mitigated physiological strain induced by mild hypohydration; however, mild hypohydration resulting from EHS elicited no adverse changes in cognitive performance.

Restricted access

Thomas Losnegard, Martin Andersen, Matt Spencer and Jostein Hallén

Purpose:

To investigate the effects of an active and a passive recovery protocol on physiological responses and performance between 2 heats in sprint cross-country skiing.

Methods:

Ten elite male skiers (22 ± 3 y, 184 ± 4 cm, 79 ± 7 kg) undertook 2 experimental test sessions that both consisted of 2 heats with 25 min between start of the first and second heats. The heats were conducted as an 800-m time trial (6°, >3.5 m/s, ~205 s) and included measurements of oxygen uptake (VO2) and accumulated oxygen deficit. The active recovery trial involved 2 min standing/walking, 16 min jogging (58% ± 5% of VO2peak), and 3 min standing/walking. The passive recovery trial involved 15 min sitting, 3 min walk/jog (~ 30% of VO2peak), and 3 min standing/walking. Blood lactate concentration and heart rate were monitored throughout the recovery periods.

Results:

The increased 800-m time between heat 1 and heat 2 was trivial after active recovery (effect size [ES] = 0.1, P = .64) and small after passive recovery (ES = 0.4, P = .14). The 1.2% ± 2.1% (mean ± 90% CL) difference between protocols was not significant (ES = 0.3, P = .3). In heat 2, peak and average VO2 was increased after the active recovery protocol.

Conclusions:

Neither passive recovery nor running at ~58% of VO2peak between 2 heats changed performance significantly.