Search Results

You are looking at 91 - 100 of 424 items for :

  • "physiologic responses" x
Clear All
Restricted access

Matthew T. Wittbrodt, Mindy Millard-Stafford, Ross A. Sherman and Christopher C. Cheatham

Purpose:

The impact of mild hypohydration on physiological responses and cognitive performance following exercise-heat stress (EHS) were examined compared with conditions when fluids were ingested ad libitum (AL) or replaced to match sweat losses (FR).

Methods:

Twelve unacclimatized, recreationally-active men (22.2 ± 2.4 y) completed 50 min cycling (60%VO2peak) in the heat (32°C; 65% RH) under three conditions: no fluid (NF), AL, and FR. Before and after EHS, a cognitive battery was completed: Trail making, perceptual vigilance, pattern comparison, match-to-sample, and letter-digit recognition tests.

Results:

Hypohydration during NF was greater compared with AL and FR (NF: -1.5 ± 0.6; AL: -0.3 ± 0.8; FR: -0.1 ± 0.3% body mass loss) resulting in higher core temperature (by 0.4, 0.5 °C), heart rate (by 13 and 15 b·min-1), and physiological strain (by 1.3, 1.5) at the end of EHS compared with AL and FR, respectively. Cognitive performance (response time and accuracy) was not altered by fluid condition; however, mean response time improved (p < .05) for letter-digit recognition (by 56.7 ± 85.8 ms or 3.8%; p < .05) and pattern comparison (by 80.6 ± 57.4 ms or 7.1%; p < .001), but mean accuracy decreased in trail making (by 1.2 ± 1.4%; p = .01) after EHS (across all conditions).

Conclusions:

For recreational athletes, fluid intake effectively mitigated physiological strain induced by mild hypohydration; however, mild hypohydration resulting from EHS elicited no adverse changes in cognitive performance.

Restricted access

Andrew C. Morris, Ira Jacobs, Tom M. McLellan, Abbey Klugerman, Lawrence C.H. Wang and Jiri Zamecnik

The purpose of this study was to examine the effects of ginseng extract ingestion on physiological responses to intense exercise. Subjects performed a control ride (CN) on a cycle ergometer, followed by placebo (PL) and ginseng (GS) treatments. Ginseng was ingested as 8 or 16 mg/kg body weight daily for 7 days prior to trial GS. Venous blood was sampled for FFA, lactate, and glucose analyses. Due to similar findings for both dose groups, the subjects were considered as one group. Lactate, FFA, VO2, VE, and RPE increased significantly from 10 through 40 min. RER increased during the first 10 min of exercise and then remained stable, with no intertrial differences. Glucose did not vary significantly from 0 to 40 min or among treatments. RPE was significantly greater and time to exhaustion was significantly less during trial CN than PL or GS, while PL and GS trials were similar. The data indicated that with 1 week of pretreatment there is no ergogenic effect of ingesting the ginseng saponin extract.

Restricted access

W. Jack Rejeski, Edward Gregg, Amy Thompson and Michael Berry

In this investigation, we examined the role of acute aerobic exercise (AE) in buffering physiological responses to mental stress. Twelve trained cyclists participated in three counterbalanced treatment conditions on separate days: attention control, light exercise (50% of VO2max for 30 min), and heavy exercise (80% of VO2max for 60 min). After a 30-min rest period following each condition, subjects completed a modified Stroop task. Blood pressure (BP) and heart rate (HR) were monitored for (a) baseline responses, (b) task reactivity, and (c), 5 min of recovery following the stressor. Mean arterial pressure (MAP) revealed that reactivity was attenuated by both heavy- and light-exercise conditions as compared to responses in the control condition. Moreover, heavy exercise was more effective in reducing MAP reactivity than light exercise. Systolic BP during the task was significantly higher in the control and light-exercise conditions than following heavy exercise; diastolic BP was significantly higher in the control condition than in either exercise condition. There were no significant effects for HR. These results suggest that there is a dose-response relationship between acute AE and the attenuation of psychophysiological reactivity during stress.

Restricted access

Amber Dallman, Eydie Abercrombie, Rebecca Drewette-Card, Maya Mohan, Michael Ray and Brian Ritacco

Background:

Physical activity has emerged as a vital area of public health. This emerging area of public health practice has created a need to develop practitioners who can address physical activity promotion using population-based approaches. Variations in physical activity practitioners' educations and backgrounds warranted the creation of minimal standards to establish the competencies needed to address physical activity as a public health priority.

Methods:

The content knowledge of physical activity practitioners tends to fall into 2 separate areas—population-based community health education and individually focused exercise physiology. Competencies reflect the importance of a comprehensive approach to physical activity promotion, including areas of community health while also understanding the physiologic responses occurring at the individual level.

Results:

Competencies are organized under the Center for Disease Control and Prevention's 5 benchmarks for physical activity and public health practice.

Conclusions:

The greatest impact on physical activity levels may be realized from a well-trained workforce of practitioners. Utilization of the competencies will enable the physical activity practitioner to provide technical assistance and leadership to promote, implement, and oversee evaluation of physical activity interventions.

Restricted access

Gi Broman, Miguel Quintana, Margareta Engardt, Lennart Gullstrand, Eva Jansson and Lennart Kaijser

The aim of the study was to examine submaximal and maximal physiological responses and perceived exertion during deep-water running with a vest compared with the responses during treadmill running in healthy elderly women. Eleven healthy women 70 ± 2 years old participated. On two different occasions they performed a graded maximal exercise test on a treadmill on land and a graded maximal exercise test in water wearing a vest. At maximal work the oxygen uptake was 29% lower (p < .05), the heart rate was 8% lower (p < .05), and the ventilation was 16% lower (p < .05) during deep-water running than during treadmill running. During submaximal absolute work the heart rate was higher during deep-water running than during treadmill running for the elderly women. The participants had lower maximal oxygen uptake, heart rate, ventilation, respiratory-exchange ratio, and rate of perceived exertion during maximal deep-water running with a vest than during maximal treadmill running. These responses were, however, higher during submaximal deep-water running than during treadmill running.

Restricted access

Mark Waldron and Aron Murphy

This study aimed to identify characteristics of match performance and physical ability that discriminate between elite and subelite under-14 soccer players. Players were assessed for closed performance and movement, physiological responses, and technical actions during matches. Elite players covered more total m·min−1 (115.7 ± 6.6 cf. 105.4 ± 7.7 m·min−1) and high-intensity m·min−1 (elite = 14.5 ± 2.3 cf. 11.5 ± 3.7 m·min−1) compared with subelite players. Elite players also attempted more successful (0.41 ± 0.11 cf. 0.18 ± 0.02) and unsuccessful ball retentions·min−1 (0.14 ± 0.04 cf. 0.06 ± 0.02) compared with subelite players. Elite players were faster over 10 m (1.9 ± 0.1 cf. 2.3 ± 0.2 s) and faster dribblers (16.4 ± 1.4 cf. 18.2 ± 1.1 s) compared with subelite players. Speed (10 m) and successful ball retention·min−1 contributed to a predictive model, explaining 96.8% of the between-group variance. The analysis of match performance provides a more thorough understanding of the factors underlying talent among youth soccer players.

Restricted access

L. Christopher Eschbach, Michael J. Webster, Joseph C. Boyd, Patrick D. McArthur and Tammy K. Evetovich

It has been suggested that Eleutherococcus senticosus (ES). also known as Siberian ginseng or ciwuija. increases fat utilization in humans. The purpose of this study was to examine the physiological responses to supplementation with ES in endurance cyclists. Using arandomized. double-blind crossover design. 9 highly-trained men (28 ± 2 years. V̇O2max 57.3±2.0 ml · kg−1 · min−1) cycled for 120 min at 60% V̇O2max followed by a simulated 10-km lime trial. Diet was controlled, and ES (1,200 mg · day−1) or a placebo (P) were administered for 7 days prior to each of the two trials. Oxygen consumption, respiratory exchange ratio, and heart rate were recorded every 30 min, and rating of perceived exertion. plasma [lactate], and plasma [glucose j were recorded every 20 min during the 120 min of steady state cycling. There were no significant differences (p > .05) between the ES and P groups at any steady-state time interval or during the cycling time trial (ES = 18.10 ± 0.42, P = 17.83 ± 0.47 min). In contrast with previous reports, the results of this study suggest that ES supplementation does not alter steady-state substrate utilization or 10-km cycling performance time.

Restricted access

Jennifer K. Ormerod, Tabatha A. Elliott, Timothy P. Scheett, Jaci L. VanHeest, Lawrence E. Armstrong and Carl M. Maresh

The purposes of this study were to characterize measures of fluid intake and perception of thirst in women over a 6-week period of exercise-heat acclimation and outdoor training and examine if this lengthy acclimation period would result in changes in fluid intake that differ from those previously reported in men utilizing a shorter acclimation protocol of 8–10 days. Voluntary water intake (11–17 °C) and perception of thirst were measured in a group of 5 women (21–26 yr) undergoing exercise-heat acclimation for 90 min/day, 3 days/wk (36 °C, rh 50–70%) and outdoor training 3 days/wk for 6 weeks. Decreased drinking during acclimation was characterized by a decrease in the number of drinks (35 ± 10 to 17 ± 5; p < .05), greater time to first drink (9.9 ± 2.0 to 23.1 ± 4.7 min; p < .05), and a decrease in total volume ingested per week (3310 ± 810 to 1849 ± 446 ml; p < .05) through the 6-week study. Mean perceived thirst measurements remained low and showed only slight variance (3 ± 0.4 to 5 ± 0.4). These observations support a psycho-physiological response pattern different than that previously observed during 8–10 day acclimation protocols in men.

Restricted access

Jon L. Oliver, Neil Armstrong and Craig A. Williams

Purpose:

The purpose of the study was to assess the reliability and validity of a newly developed laboratory protocol to measure prolonged repeated-sprint ability (RSA) during soccer-specific exercise.

Methods:

To assess reliability, 12 youth soccer players age 15.2 ± 0.3 y performed 2 trials of a soccer-specific intermittent-exercise test (SSIET) separated by 3 months. The test was performed on a nonmotorized treadmill. A separate sample of 12 youth soccer players (15.2 ± 0.3 y) completed the SSIET while simultaneously HR, VO2, and blood lactate (BLa) were monitored. The SSIET was designed to replicate the demands of competing in one half of a soccer match while sprint performance was monitored. The test included a 5-s sprint every 2 min.

Results:

The mean coefficient of variation was 2.5% for the total distance covered during the SSIET and 3.8% for the total distance sprinted; measures of power output were less reliable (>5.9%). Participants covered 4851 ± 251 m during the SSIET, working at an average intensity of 87.5% ± 3.2% HRpeak and 70.2% ± 3.1% VO2peak, with ~7mmol/L BLa accumulation. A significant reduction (P < .05) in sprint performance was ob served over the course of the SSIET.

Conclusion:

The SSIET provided a reliable method of assessing prolonged RSA in the laboratory. The distance covered and the physiological responses during the SSIET successfully recreated the demands of competing in a soccer match.

Restricted access

Melitta A. McNarry, Joanne R. Welsman and Andrew M. Jones

The influence of training status on pulmonary VO2 recovery kinetics, and its interaction with maturity, has not been investigated in young girls. Sixteen prepubertal (Pre: trained (T, 11.4 ± 0.7 years), 8 untrained (UT, 11.5 ± 0.6 years)) and 8 pubertal (Pub: 8T, 14.2 ± 0.7 years; 8 UT, 14.5 ± 1.3 years) girls completed repeat transitions from heavy intensity exercise to a baseline of unloaded exercise, on both an upper and lower body ergometer. The VO2 recovery time constant was significantly shorter in the trained prepubertal and pubertal girls during both cycle (Pre: T, 26 ± 4 vs. UT, 32 ± 6; Pub: T, 28 ± 2 vs. UT, 35 ± 7 s; both p < .05) and upper body exercise (Pre: T, 26 ± 4 vs. UT, 35 ± 6; Pub: T, 30 ± 4 vs. UT, 42 ± 3 s; both p < .05). No interaction was evident between training status and maturity. These results demonstrate the sensitivity of VO2 recovery kinetics to training in young girls and challenge the notion of a “maturational threshold” in the influence of training status on the physiological responses to exercise and recovery.