Search Results

You are looking at 91 - 100 of 303 items for :

  • "training periodization" x
Clear All
Restricted access

John Hough, Caroline Robertson and Michael Gleeson

Purpose:

This study examined the influence of 10 days of intensified training on salivary cortisol and testosterone responses to 30-min, high-intensity cycling (55/80) in a group of male elite triathletes.

Methods:

Seven elite male triathletes (age 19 ± 1 y, V̇O2max 67.6 ± 4.5 mL · kg–1 · min–1) completed the study. Swim distances increased by 45%. Running and cycling training hours increased by 25% and 229%, respectively. REST-Q questionnaires assessed mood status before, during, and after the training period. Unstimulated saliva samples were collected before, after, and 30 min after a continuous, high-intensity exercise test. Salivary cortisol and testosterone concentrations were assessed.

Results:

Compared with pretraining, blunted exercise-induced salivary testosterone responses to the posttraining 55/80 were found (P = .004). The absolute response of salivary testosterone concentrations to the 55/80 decreased pretraining to posttraining from 114% to 85%. No changes were found in exercise-induced salivary cortisol concentration responses to the 55/80. REST-Q scores indicated no changes in the participants’ psychological stress–recovery levels over the training camp.

Conclusions:

The blunted exercise-induced salivary testosterone is likely due to decreased testicular testosterone production and/or secretion, possibly attributable to hypothalamic dysfunction or reduced testicular blood flow. REST-Q scores suggest that the triathletes coped well with training-load elevations, which could account for the finding of no change in the exercise-induced salivary cortisol concentration. Overall, these findings suggest that the 55/80 can detect altered exercise-induced salivary testosterone concentrations in an elite athletic population due to increased training stress. However, this alteration occurs independently of a perceived elevation of training stress.

Restricted access

Arne Guellich and Stephen Seiler

Purpose:

To compare the intensity distribution during cycling training among elite track cyclists who improved or decreased in ergometer power at 4 mM blood lactate during a 15 wk training period.

Methods:

51 young male German cyclists (17.4 ± 0.5 y; 30 international, 21 national junior finalists) performed cycle ergometer testing at the onset and at the end of a 15 wk basic preparation period, and reported their daily volumes of defined exercise types and intensity categories. Training organization was compared between two subgroups who improved (Responders, n = 17; ΔPLa4⋅kg-1 = +11 ± 4%) or who decreased in ergometer performance (Non-Responders, n = 17; ΔPLa4⋅kg-1 = –7 ± 6%).

Results:

Responders and Non-Responders did not differ significantly in the time invested in noncycling specific training or in the total cycling distance performed. They did differ in their cycling intensity distribution. Responders accumulated significantly more distance at low intensity (<2 mM blood lactate) while Non-Responders performed more training at near threshold intensity (3–6 mM). Cycling intensity distribution accounted for approx. 60% of the variance of changes in ergometer performance over time. Performance at t1 combined with workout intensity distribution explained over 70% of performance variance at t2.

Conclusion:

Variation in lactate profle development is explained to a substantial degree by variation in training intensity distribution in elite cyclists. Training at <2 mM blood lactate appears to play an important role in improving the power output to blood lactate relationship. Excessive training near threshold intensity (3–6 mM blood lactate) may negatively impact lactate threshold development. Further research is required to explain the underlying adaptation mechanisms.

Restricted access

Benjamin Henry, Todd McLoda, Carrie L. Docherty and John Schrader

Context:

Peroneal reaction to sudden inversion has been determined to be too slow to overcome the joint motion. A focused plyometric training program may decrease the muscle's reaction time.

Objective:

To determine the effect of a 6-wk plyometric training program on peroneus longus reaction time.

Design:

Repeated measures.

Setting:

University research laboratory.

Participants:

48 healthy volunteers (age 20.0 ± 1.2 y, height 176.1 ± 16.9 cm, weight 74.5 ± 27.9 kg) from a large Midwestern university. Subjects were randomly assigned to either a training group or a control group.

Interventions:

Independent variables were group at 2 levels (training and no training) and time at 2 levels (pretest and posttest). The dependent variable was peroneal latency measured with surface electromyography. A custom-made trapdoor device capable of inverting the ankle to 30° was also used. Latency data were obtained from the time the trapdoor dropped until the peroneus longus muscle activated. Peroneal latency was measured before and after the 6-wk training period. The no-training group was instructed to maintain current activities. The training group performed a 6-wk plyometric protocol 3 times weekly. Data were examined with a repeated-measures ANOVA with 1 within-subject factor (time at 2 levels) and 1 between-subjects factor (group at 2 levels). A priori alpha level was set at P < .05.

Main Outcome Measures:

Pretest and posttest latency measurements (ms) were recorded for the peroneus longus muscle.

Results:

The study found no significant group-by-time interaction (F 1,46 = 0.03, P = .87). In addition, there was no difference between the pretest and posttest values (pretest = 61.76 ± 14.81 ms, posttest = 59.24 ± 12.28 ms; P = .18) and no difference between the training and no-training groups (training group = 59.10 ± 12.18 ms, no-training group = 61.79 ± 15.18 ms; P = .43).

Conclusions:

Although latency measurements were consistent with previous studies, the plyometric training program did not cause significant change in the peroneus longus reaction time.

Restricted access

Olivier Hue, Roland Monjo, Marc Lazzaro, Michelle Baillot, Philippe Hellard, Laurent Marlin and A. Jean-Etienne

The authors tested the effect of cold water ingestion during high-intensity training in the morning vs the evening on both core temperature (TC) and thermal perceptions of internationally ranked long-distance swimmers during a training period in a tropical climate. Nine internationally ranked long-distance swimmers (5 men and 4 women) performed 4 randomized training sessions (2 in the evening and 2 in the morning) with 2 randomized beverages with different temperatures for 3 consecutive days. After a standardized warm-up of 1000 m, the subjects performed a standardized training session that consisted of 10 × 100 m (start every 1′20″) at a fixed velocity. The swimmers were then followed for the next 3000 m of the training schedule. Heart rate (HR) was continuously monitored during the 10 × 100 m, whereas TC, thermal comfort, and thermal sensation (TS) were measured before and after each 1000-m session. Before and after each 1000 m, the swimmers were asked to drink 190 mL of neutral (26.5 ± 2.5°C) or cold (1.3 ± 0.3°C) water packaged in standardized bottles. Results demonstrated that cold water ingestion induced a significant effect on TC, with a pronounced decrease in the evening, resulting in significantly lower mean TC and lower mean delta TC in evening cold (EC) than in evening neutral (EN), concomitant with significantly lower TS in EC than in EN and a significant effect on exercise HR. Moreover, although TC increased significantly with time in MN, MC, and EN, TC was stabilized during exercise in EC. To conclude, we demonstrate that a cold beverage had a significant effect on TC, TS, and HR during training in high-level swimmers in a tropical climate, especially during evening training.

Restricted access

Matthew W. Driller, John R. Gregory, Andrew D. Williams and James W. Fell

Recent research has reported performance improvements after chronic NaHCO3 ingestion in conjunction with high-intensity interval training (HIT) in moderately trained athletes. The purpose of the current study was to determine the effects of altering plasma H+ concentration during HIT through NaHCO3 ingestion over 4 wk (2 HIT sessions/wk) in 12 Australian representative rowers (M ± SD; age 22 ± 3 yr, mass 76.4 ± 4.2 kg, VO2peak 65.50 ± 2.74 ml · kg−1 · min−1). Baseline testing included a 2,000-m time trial and an incremental exercise test. After baseline testing, rowers were allocated to either a chronic NaHCO3 (ALK) or placebo (PLA) group. Starting 90 min before each HIT session, subjects ingested a 0.3-g/kg body mass dose of NaHCO3 or a placebo substance. Fingertip blood samples were taken throughout the study to analyze bicarbonate and pH levels. The ALK group did not produce any additional improvements in 2,000-m rowing performance time compared with PLA (p > .05). Magnitude-based inferential analysis indicated an unclear or trivial effect on 2,000-m power, 2,000-m time, peak power output, and power at 4 mmol/L lactate threshold in the ALK group compared with the PLA group. Although there was no difference between groups, during the study there was a significant mean (± SD) 2,000-m power improvement in both the ALK and PLA groups of 17.8 ± 14.5 and 15.2 ± 18.3 W, respectively. In conclusion, despite overall improvements in rowing performance after 4 wk of HIT, the addition of chronic NaHCO3 supplementation during the training period did not significantly enhance performance further.

Restricted access

Jennifer Sygo, Alexandra M. Coates, Erik Sesbreno, Margo L. Mountjoy and Jamie F. Burr

Low energy availability (LEA), and subsequent relative energy deficiency in sport, has been observed in endurance, aesthetic, and team sport athletes, with limited data on prevalence in athletes in short-burst activities such as sprinting. We examined prevalence of signs and symptoms of LEA in elite female sprinters at the start of the training season (PRE), and at the end of a 5-month indoor training period (POST). Four of 13 female sprinters (31%) presented at PRE testing with at least one primary (amenorrhea, low bone mineral density, low follicle-stimulating hormone, luteinizing hormone, or estradiol, resting metabolic rate ≤29 kcal/kg fat-free mass, Low Energy Availability in Females Questionnaire score ≥8) and one secondary indicator of LEA (fasting blood glucose <4 mmol/L, free triiodothyronine <3.5 pmol/L, ferritin <25 μg/L, low-density lipoprotein cholesterol >3.0 mmol/L, fasting insulin <20 pmol/L, low insulin-like growth factor-1, systolic blood pressure <90 mmHg, and/or diastolic blood pressure <60 mmHg). At POST, seven out of 13 athletes (54%) presented with at least one primary and one secondary indicator of LEA, three of whom had also presented with indicators of LEA at PRE. Five out of 13 (39%) athletes had previous stress fracture history, though this was not associated with current indicators of LEA (PRE: r = .52, p = .07; POST: r = −.07, p = .82). In conclusion, elite female sprinters may present with signs and symptoms of LEA, even after off-season rest. Medical and coaching staff should be aware of the signs and symptoms of LEA and relative energy deficiency in sport and should include appropriate screening and intervention strategies when working with sprinters.

Restricted access

Leyre Gravina, Frankie F. Brown, Lee Alexander, James Dick, Gordon Bell, Oliver C. Witard and Stuart D.R. Galloway

Omega-3 fatty acid (n-3 FA) supplementation could promote adaptation to soccer-specific training. We examined the impact of a 4-week period of n-3 FA supplementation during training on adaptations in 1RM knee extensor strength, 20-m sprint speed, vertical jump power, and anaerobic endurance capacity (Yo-Yo test) in competitive soccer players. Twenty six soccer players were randomly assigned to one of two groups: n-3 FA supplementation (n-3 FA; n = 13) or placebo (n = 13). Both groups performed two experimental trial days. Assessments of physical function and respiratory function were conducted pre (PRE) and post (POST) supplementation. Training session intensity, competitive games and nutritional intake were monitored during the 4-week period. No differences were observed in respiratory measurements (FEV1, FVC) between groups. No main effect of treatment was observed for 1RM knee extensor strength, explosive leg power, or 20 m sprint performance, but strength improved as a result of the training period in both groups (p < .05). Yo-Yo test distance improved with training in the n-3 FA group only (p < .01). The mean difference (95% CI) in Yo-Yo test distance completed from PRE to POST was 203 (66–340) m for n-3 FA, and 62 (-94–217) m for placebo, with a moderate effect size (Cohen’s d of 0.52). We conclude that 4 weeks of n-3 FA supplementation does not improve strength, power or speed assessments in competitive soccer players. However, the increase in anaerobic endurance capacity evident only in the n-3 FA treatment group suggests an interaction that requires further study.

Restricted access

Daniel Hammes, Sabrina Skorski, Sascha Schwindling, Alexander Ferrauti, Mark Pfeiffer, Michael Kellmann and Tim Meyer

The Lamberts and Lambert Submaximal Cycle Test (LSCT) is a novel test designed to monitor performance and fatigue/recovery in cyclists. Studies have shown the ability to predict performance; however, there is a lack of studies concerning monitoring of fatigue/recovery. In this study, 23 trained male cyclists (age 29 ± 8 y, VO2max 59.4 ± 7.4 mL · min−1 · kg−1) completed a training camp. The LSCT was conducted on days 1, 8, and 11. After day 1, an intensive 6-day training period was performed. Between days 8 and 11, a recovery period was realized. The LSCT consists of 3 stages with fixed heart rates of 6 min at 60% and 80% and 3 min at 90% of maximum heart rate. During the stages, power output and rating of perceived exertion (RPE) were determined. Heart-rate recovery was measured after stage 3. Power output almost certainly (standardized mean difference: 1.0) and RPE very likely (1.7) increased from day 1 to day 8 at stage 2. Power output likely (0.4) and RPE almost certainly (2.6) increased at stage 3. From day 8 to day 11, power output possibly (–0.4) and RPE likely (–1.5) decreased at stage 2 and possibly (–0.1) and almost certainly (–1.9) at stage 3. Heart-rate recovery was likely (0.7) accelerated from day 1 to day 8. Changes from day 8 to day 11 were unclear (–0.1). The LSCT can be used for monitoring fatigue and recovery, since parameters were responsive to a fatiguing training and a following recovery period. However, consideration of multiple LSCT variables is required to interpret the results correctly.

Restricted access

Floris C. Wardenaar, Rianne Dijkhuizen, Ingrid J.M. Ceelen, Emma Jonk, Jeanne H.M. De Vries, Renger F. Witkamp and Marco Mensink

Purpose:

The objective of this study was to investigate whether ultramarathon runners were able to meet nutrition recommendations during a training period and on a competition day.

Methods:

In preparation for a 60 or 120 km ultramarathon covering a varied terrain, male and female ultramarathon runners (n = 68, age 46.5 ± 7.1 y) reported habitual dietary intake during three independent days using a web-based 24-hr recall and questionnaires. The diet was assessed using probability of inadequacy or by qualitative evaluation using reference dietary intakes or sports nutrition recommendations. A small group of 120 km runners (n = 4) was observed continuously during the race. After the race, 60 km runners (n = 41) received a questionnaire to assess dietary intake and gastrointestinal (GI) distress on the race day. Spearman rank correlation coefficients (r) were applied to investigate the association between intake and general GI distress symptoms.

Results:

In men and women, habitual mean carbohydrate (CHO) intake was lower than recommended, as was mean protein intake by women. CHO intake during the race was <60 g/h in 75% of the athletes. A large variation of nutrient and fluid intake was seen. GI distress during the race was reported in 82% of the runners; severe GI distress was low. In general, moderate, mostly negative, correlations with nutrient intake were seen for GI distress.

Conclusions:

Sports nutrition recommendations for the habitual diet were not achieved. During a competition day, a large variation was found in nutrient intake; this may be related to a high incidence of GI distress.

Restricted access

Jaime Fernandez-Fernandez, David Sanz, Jose Manuel Sarabia and Manuel Moya

Purpose:

To compare the effects of combining high-intensity training (HIT) and sport-specific drill training (MT) versus sportspecific drill training alone (DT) on fitness performance characteristics in young tennis players.

Methods:

Twenty young tennis players (14.8 ± 0.1 y) were assigned to either DT (n = 10) or MT (n = 10) for 8 wk. Tennis drills consisted of two 16- to 22-min on-court exercise sessions separated by 3 min of passive rest, while MT consisted of 1 sport-specific DT session and 1 HIT session, using 16–22 min of runs at intensities (90–95%) related to the velocity obtained in the 30–15 Intermittent Fitness Test (VIFT) separated by 3 min of passive rest. Pre- and posttests included peak oxygen uptake (VO2peak), VIFT, speed (20 m, with 5- and 10-m splits), 505 Agility Test, and countermovement jump (CMJ).

Results:

There were significant improvements after the training period in VO2peak (DT 2.4%, ES = moderate; MT 4.2%, ES = large) and VIFT (DT 2.2%, ES = small; MT 6.3%, ES = large) for both DT and MT, with no differences between training protocols. Results also showed a large increase in the 505 Agility Test after MT, while no changes were reported in the other tests (sprint and CMJ), either for MT or DT.

Conclusions:

Even though both training programs resulted in significant improvements in aerobic performance, a mixed program combining tennis drills and runs based on the VIFT led to greater gains and should be considered the preferred training method for improving aerobic power in young athletes.