Search Results

You are looking at 91 - 100 of 566 items for :

  • "validation" x
  • Athletic Training, Therapy, and Rehabilitation x
Clear All
Restricted access

Hong-Wan Ng, Ee-Chon Teo and QingHang Zhang

Posterior decompressive techniques including one- and two-level laminotomies and laminectomies are often used in treating cervical stenosis. Previously, several in vitro studies were conducted to help us understand the biomechanical changes occurring in the cervical spine after these surgical techniques. However, changes in the intersegmental flexibility under combined flexion-extension remain unclear. In this study, a 3-D nonlinear intact model of the C2–C7 was developed to evaluate the influence of one- and two-level laminotomies and laminectomies on the intersegmental moment rotational responses and internal stresses. The intact model was validated by comparing the predicted responses against experimental data. The validated model was then modified to simulate various surgical techniques for finite element analysis. Results showed that one- and two-level laminectomies increase the C2–C7 rotation motions by about 15% and 20%, respectively. The predicted increase in rotational motions also correlated well with the published data. Furthermore, results indicated that laminectomies would influence the biomechanical responses on both the affected and adjacent motion segments. In contrast, laminotomies have no significant effects on cervical biomechanics. To conduct a one-level laminectomy study, current findings indicate that it takes at least five motion segments to capture the immediate postsurgical biomechanical changes accurately and realistically. Minimally invasive cervical spine surgeries with one- or two-level laminotomies are preferred over one- and two-level laminectomies. Also, there is no consideration as to the efficacy of the two techniques in decompressing the spinal cord or nerve roots, which is the goal of the surgery, but is not examined in this study.

Restricted access

Klaus Schneider and Ronald F. Zernicke

With a validated mathematical model of the head-neck consisting of nine rigid bodies (skull, seven cervical vertebrae, and torso), we simulated head impacts to estimate the injury risk associated with soccer heading. Experimental data from head-linear accelerations during soccer heading were used to validate the nine-body head-neck model for short duration impact loading of the head. In the computer simulations, the mass ratios between head mass and impacting body mass, the velocity of the impacting body, and the impact elasticity were varied. Head-linear and angular accelerations were compared to standard head-injury tolerance levels, and the injury risk specifically related to soccer heading was estimated. Based on our choice of tolerance levels in general, our simulations showed that injury risk from angular head accelerations was greater than from linear head accelerations, and compared to frontal impacts, lateral impacts had greater angular and less linear head accelerations. During soccer heading, our simulations indicated an unacceptable injury risk caused by angular head accelerations for frontal and lateral impacts at relatively low impact velocities for children, and at medium range impact velocities for adults. For linear head accelerations, injury risk existed for frontal and lateral impacts at medium range to relatively larger impact velocities for children, while no injury risk was shown for adults throughout the entire velocity range. For injury prevention, we suggest that head-injury risk can be reduced most substantially by increasing the mass ratio between head and impacting body. In soccer with children, the mass of the impacting body has to be adjusted to the reduced head mass of a child, that is, it must be clearly communicated to parents, coaches, and youngsters to only use smaller soccer balls.

Restricted access

Robin S. Vealey, Robin Cooley, Emma Nilsson, Carly Block and Nick Galli

effectiveness as a consultant     Coaches/administrators like to have quantitative data   Cross-validate observations/interviews Validation of my observations; cross-checking with interviews     Identify discrepancies between objective and subjective data   Selection Draft selection Build Relationships Rapport

Restricted access

Mark L. McMulkin, Jeffrey C. Woldstad and Richard E. Hughes

Biomechanical optimization models are often used to estimate muscular and intervertebral disc forces during physical exertions. The purpose of this study was to determine whether an optimization-based biomechanical model predicts torso muscular activity of males and females equally well. The Minimum Intensity Compression (MIC) model, which has been extensively applied in industrial ergonomic task analysis, was used to estimate muscle forces for 3D moments. Participants (6 M, 6 F) performed 18 isometric exertions resisting 3D L3/L4 moments while electromyographic (EMG) activity was recorded for 8 muscles. Overall, model force estimates correlated better with male EMG activity (R 2 = 0.43) than with female EMG activity (R 2 = 0.33). Model force estimates of 4 muscles (LRA, RRA, REO, and RES) correlated better with male EMG activity than with female EMG. We conclude that trunk muscle forces estimated by current biomechanical modeling do not correlate equally well to male and female EMG activity. Future research needs to address validation or improvement of biomechanical trunk models for females.

Restricted access

John F. Swigart, Arthur G. Erdman and Patrick J. Cain

A new method for quantifying shoe cushioning durability was developed. This method used a computer-controlled, closed-loop materials testing system to subject the shoes to force-time profiles that were indicative of running. The change in the magnitude of the maximum energy absorbed by a shoe and the change in the magnitude of the energy balance of the shoe were quantified after the shoe had been worn running for a given distance. A shoe that changed very little in these quantities had a small energy wear factor and was deemed to have durable cushioning. The test method was roughly validated through comparison of three shoes of different midsole constructions with known relative durabilities. The shoes were tested at four simulated running speeds for energy properties when they were new and after they were run in for 161 km. The relative durabilities of the tested shoes were consistent with expectations based on the shoes' materials and constructions, showing that the new method has promise in predicting shoe cushioning durability, and thus more complete studies of the method may prove useful.

Restricted access

Louis A. DiBerardino III, Chantal A. Ragetly, Sungjin Hong, Dominique J. Griffon and Elizabeth T. Hsiao-Wecksler

The regions of deviation method has been proposed as a technique for identifying regions of the gait cycle where joint motion deviates from normal (Shorter et al., 2008). The original statistical analysis distinguished only peak values during stance and swing. In the current article, we extend the approach by examining deviations from normal throughout the entire gait cycle using pointwise t tests. These methods were demonstrated on hind-limb joint angles of 21 Labrador Retrievers without and with cranial cruciate ligament disease. Results were compared with peak difference analysis previously performed on these subjects. All points in the gait cycle where symmetry deviations were significantly affected by cranial cruciate ligament disease (via pointwise t tests) were defined as regions of deviation from symmetry. Discriminant function analysis was used to consider single subjects and validate that these regions were truly areas of difference between groups. Regions of deviation encompassed previously determined significant peak differences, while extending analysis to additional areas of asymmetry. Discriminant function analysis suggested that the region of deviation method is a viable approach for distinguishing motion pattern differences. This enhanced method may help researchers better understand the mechanisms behind lameness and compensation.

Restricted access

Andre Filipe Santos-Magalhaes and Karen Hambly


The assessment of physical activity and return to sport and exercise activities is an important component in the overall evaluation of outcome after autologous cartilage implantation (ACI).


To identify the patient-report instruments that are commonly used in the evaluation of physical activity and return to sport after ACI and provide a critical analysis of these instruments from a rehabilitative perspective.

Evidence Acquisition:

A computerized search was performed in January 2013 and repeated in March 2013. Criteria for inclusion required that studies (1) be written in English and published between 1994 and 2013; (2) be clinical studies where knee ACI cartilage repair was the primary treatment, or comparison studies between ACI and other techniques or between different ACI generations; (3) report postoperative physical activity and sport participation outcomes results, and (4) have evidence level of I–III.

Evidence Synthesis:

Twenty-six studies fulfilled the inclusion criteria. Three physical activity scales were identified: the Tegner Activity Scale, Modified Baecke Questionnaire, and Activity Rating Scale. Five knee-specific instruments were identified: the Lysholm Knee Function Scale, International Knee Documentation Committee Score Subjective Form, Knee Injury and Osteoarthritis Outcome Score, Modified Cincinnati Knee Score, and Stanmore-Bentley Functional Score.


Considerable heterogeneity exists in the reporting of physical activity and sports participation after ACI. Current instruments do not fulfill the rehabilitative needs in the evaluation of physical activity and sports participation. The validated instruments fail in the assessment of frequency, intensity, and duration of sports participation.

Restricted access

Sean P. Flanagan and George J. Salem

In the analysis of human movement, researchers often sum individual joint kinetics to obtain a single measure of lower extremity function. The extent to which these summed measures relate to the mechanical objectives of the task has not been formally validated. The criterion validity of these measures was established with comparisons to the mechanical objective of two multiple-joint tasks. For the Work task 18 participants performed a loaded barbell squat using 4 resistances while instrumented for biomechanical analysis. For the Power they performed 2 predetermined amounts of work at both self-selected and fast speeds. Using inverse dynamics techniques, the peak net joint moment (PM) was calculated bilaterally in the sagittal plane at the ankle, knee, and hip and was summed into a single measure. This measure was correlated with the task objectives using simple linear regression. Similar procedures were used for the average net joint moment (AM), peak (PP), and average (AP) net joint moment power, and the net joint moment impulse (IM) and work (IP). For the Work task all 6 measures were significantly correlated with the task objective, but only AM, PM, and IP had correlation coefficients above 0.90. For the Power task, IM was not significantly correlated with the task objective, and only AP had a correlation coefficient above 0.90. These findings indicate that the validity of summing individual kinetic measures depends on both the measure chosen and the mechanical objective of the task.

Restricted access

Jonathon S. Schofield, Eric Parent, Justin Lewicke, Jason P. Carey, Marwan El-Rich and Samer Adeeb

Sit-to-stand transfer is a common prerequisite for many daily tasks. Literature often assumes symmetric behavior across the left and right side. Although this assumption of bilateral symmetry is prominent, few studies have validated this supposition. This pilot study uniquely quantifies peak joint moments and ground reaction forces (GRFs), using a Euclidian norm approach, to evaluate bilateral symmetry and its relation to lower limb motor-dominance during sit to stand in ten healthy males. Peak joint moments and GRFs were determined using a motion capture system and inverse dynamics. This analysis included joint moment contributions from all three body planes (sagittal, coronal, and axial) as well as vertical and shearing GRFs. A paired, one-tailed t test was used, suggesting asymmetrical joint moment development in all three lower extremity joints as well as GRFs (P < .05). Furthermore, using an unpaired two-tailed t test, asymmetry developed during these movements does not appear to be predictable by participants’ lower limb motor-dominance (P < .025). Consequently, when evaluating sit-to-stand it is suggested the effects of asymmetry be considered in the interpretation of data. The absence of a relationship between dominance and asymmetry prevents the suggestion that one side can be tested to infer behavior of the contralateral.

Restricted access

Anthony S. Kulas, Randy J. Schmitz, Sandra J. Shultz, Mary Allen Watson and David H. Perrin

Although leg spring stiffness represents active muscular recruitment of the lower extremity during dynamic tasks such as hopping and running, the joint-specific characteristics comprising the damping portion of this measure, leg impedance, are uncertain. The purpose of this investigation was to assess the relationship between leg impedance and energy absorption at the ankle, knee, and hip during early (impact) and late (stabilization) phases of landing. Twenty highly trained female dancers (age = 20.3 ± 1.4 years, height = 163.7 ± 6.0 cm, mass = 62.1 ± 8.1 kg) were instrumented for biomechanical analysis. Subjects performed three sets of double-leg landings from under preferred, stiff, and soft landing conditions. A stepwise linear regression analysis revealed that ankle and knee energy absorption at impact, and knee and hip energy absorption during the stabilization phases of landing explained 75.5% of the variance in leg impedance. The primary predictor of leg impedance was knee energy absorption during the stabilization phase, independently accounting for 55% of the variance. Future validation studies applying this regression model to other groups of individuals are warranted.