Search Results

You are looking at 91 - 100 of 573 items for :

  • "validation" x
  • Athletic Training, Therapy, and Rehabilitation x
Clear All
Restricted access

Klaus Schneider and Ronald F. Zernicke

With a validated mathematical model of the head-neck consisting of nine rigid bodies (skull, seven cervical vertebrae, and torso), we simulated head impacts to estimate the injury risk associated with soccer heading. Experimental data from head-linear accelerations during soccer heading were used to validate the nine-body head-neck model for short duration impact loading of the head. In the computer simulations, the mass ratios between head mass and impacting body mass, the velocity of the impacting body, and the impact elasticity were varied. Head-linear and angular accelerations were compared to standard head-injury tolerance levels, and the injury risk specifically related to soccer heading was estimated. Based on our choice of tolerance levels in general, our simulations showed that injury risk from angular head accelerations was greater than from linear head accelerations, and compared to frontal impacts, lateral impacts had greater angular and less linear head accelerations. During soccer heading, our simulations indicated an unacceptable injury risk caused by angular head accelerations for frontal and lateral impacts at relatively low impact velocities for children, and at medium range impact velocities for adults. For linear head accelerations, injury risk existed for frontal and lateral impacts at medium range to relatively larger impact velocities for children, while no injury risk was shown for adults throughout the entire velocity range. For injury prevention, we suggest that head-injury risk can be reduced most substantially by increasing the mass ratio between head and impacting body. In soccer with children, the mass of the impacting body has to be adjusted to the reduced head mass of a child, that is, it must be clearly communicated to parents, coaches, and youngsters to only use smaller soccer balls.

Restricted access

Brian T. Tomblin, N. Stewart Pritchard, Tanner M. Filben, Logan E. Miller, Christopher M. Miles, Jillian E. Urban and Joel D. Stitzel

associated peak head kinematics in competitive youth female soccer players with a validated mouthpiece sensor during a season of play with a validated mouthpiece sensor. Methods Fourteen female athletes from 2 local youth soccer teams were recruited for participation in this study, which was approved by the

Restricted access

Robin S. Vealey, Robin Cooley, Emma Nilsson, Carly Block and Nick Galli

effectiveness as a consultant     Coaches/administrators like to have quantitative data   Cross-validate observations/interviews Validation of my observations; cross-checking with interviews     Identify discrepancies between objective and subjective data   Selection Draft selection Build Relationships Rapport

Restricted access

Mark L. McMulkin, Jeffrey C. Woldstad and Richard E. Hughes

Biomechanical optimization models are often used to estimate muscular and intervertebral disc forces during physical exertions. The purpose of this study was to determine whether an optimization-based biomechanical model predicts torso muscular activity of males and females equally well. The Minimum Intensity Compression (MIC) model, which has been extensively applied in industrial ergonomic task analysis, was used to estimate muscle forces for 3D moments. Participants (6 M, 6 F) performed 18 isometric exertions resisting 3D L3/L4 moments while electromyographic (EMG) activity was recorded for 8 muscles. Overall, model force estimates correlated better with male EMG activity (R 2 = 0.43) than with female EMG activity (R 2 = 0.33). Model force estimates of 4 muscles (LRA, RRA, REO, and RES) correlated better with male EMG activity than with female EMG. We conclude that trunk muscle forces estimated by current biomechanical modeling do not correlate equally well to male and female EMG activity. Future research needs to address validation or improvement of biomechanical trunk models for females.

Restricted access

Jeremy R. Dicus and Jeff G. Seegmiller

Few ankle inversion studies have taken anticipation bias into account or collected data with an experimental design that mimics actual injury mechanisms. Twenty-three participants performed randomized single-leg vertical drop landings from 20 cm. Subjects were blinded to the landing surface (a flat force plate or 30° inversion wedge on the force plate). After each trial, participants reported whether they anticipated the landing surface. Participant responses were validated with EMG data. The protocol was repeated until four anticipated and four unanticipated landings onto the inversion wedge were recorded. Results revealed a significant main effect for landing condition. Normalized vertical ground reaction force (% body weights), maximum ankle inversion (degrees), inversion velocity (degrees/second), and time from contact to peak muscle activation (seconds) were significantly greater in unanticipated landings, and the time from peak muscle activation to maximum VGRF (second) was shorter. Unanticipated landings presented different muscle activation patterns than landings onto anticipated surfaces, which calls into question the usefulness of clinical studies that have not controlled for anticipation bias.

Restricted access

Louis A. DiBerardino III, Chantal A. Ragetly, Sungjin Hong, Dominique J. Griffon and Elizabeth T. Hsiao-Wecksler

The regions of deviation method has been proposed as a technique for identifying regions of the gait cycle where joint motion deviates from normal (Shorter et al., 2008). The original statistical analysis distinguished only peak values during stance and swing. In the current article, we extend the approach by examining deviations from normal throughout the entire gait cycle using pointwise t tests. These methods were demonstrated on hind-limb joint angles of 21 Labrador Retrievers without and with cranial cruciate ligament disease. Results were compared with peak difference analysis previously performed on these subjects. All points in the gait cycle where symmetry deviations were significantly affected by cranial cruciate ligament disease (via pointwise t tests) were defined as regions of deviation from symmetry. Discriminant function analysis was used to consider single subjects and validate that these regions were truly areas of difference between groups. Regions of deviation encompassed previously determined significant peak differences, while extending analysis to additional areas of asymmetry. Discriminant function analysis suggested that the region of deviation method is a viable approach for distinguishing motion pattern differences. This enhanced method may help researchers better understand the mechanisms behind lameness and compensation.

Restricted access

John F. Swigart, Arthur G. Erdman and Patrick J. Cain

A new method for quantifying shoe cushioning durability was developed. This method used a computer-controlled, closed-loop materials testing system to subject the shoes to force-time profiles that were indicative of running. The change in the magnitude of the maximum energy absorbed by a shoe and the change in the magnitude of the energy balance of the shoe were quantified after the shoe had been worn running for a given distance. A shoe that changed very little in these quantities had a small energy wear factor and was deemed to have durable cushioning. The test method was roughly validated through comparison of three shoes of different midsole constructions with known relative durabilities. The shoes were tested at four simulated running speeds for energy properties when they were new and after they were run in for 161 km. The relative durabilities of the tested shoes were consistent with expectations based on the shoes' materials and constructions, showing that the new method has promise in predicting shoe cushioning durability, and thus more complete studies of the method may prove useful.

Restricted access

Andre Filipe Santos-Magalhaes and Karen Hambly

Context:

The assessment of physical activity and return to sport and exercise activities is an important component in the overall evaluation of outcome after autologous cartilage implantation (ACI).

Objective:

To identify the patient-report instruments that are commonly used in the evaluation of physical activity and return to sport after ACI and provide a critical analysis of these instruments from a rehabilitative perspective.

Evidence Acquisition:

A computerized search was performed in January 2013 and repeated in March 2013. Criteria for inclusion required that studies (1) be written in English and published between 1994 and 2013; (2) be clinical studies where knee ACI cartilage repair was the primary treatment, or comparison studies between ACI and other techniques or between different ACI generations; (3) report postoperative physical activity and sport participation outcomes results, and (4) have evidence level of I–III.

Evidence Synthesis:

Twenty-six studies fulfilled the inclusion criteria. Three physical activity scales were identified: the Tegner Activity Scale, Modified Baecke Questionnaire, and Activity Rating Scale. Five knee-specific instruments were identified: the Lysholm Knee Function Scale, International Knee Documentation Committee Score Subjective Form, Knee Injury and Osteoarthritis Outcome Score, Modified Cincinnati Knee Score, and Stanmore-Bentley Functional Score.

Conclusions:

Considerable heterogeneity exists in the reporting of physical activity and sports participation after ACI. Current instruments do not fulfill the rehabilitative needs in the evaluation of physical activity and sports participation. The validated instruments fail in the assessment of frequency, intensity, and duration of sports participation.

Restricted access

Suzanne LaScalza, Linda N. Gallo, James E. Carpenter and Richard E. Hughes

Clinical observation suggests that shoulder pathologies such as rotator cuff disorders and shoulder instability may alter the normal shoulder rhythm or relative motions of the structures comprising the shoulder girdle. The purpose of this study was to assess the accuracy of using a skin-mounted humeral cuff that could be used in vivo to determine Euler rotation angles and the helical axis of motion (HAM) during upper extremity movements. An in vitro model was used to compare the kinematics determined from the externally applied humeral cuff to the kinematics measured directly from the humerus. The upper extremities of five cadavers were moved through several humerus and forearm motion trials. Measurements from the humeral cuff were compared directly to the bone measurements for all trials to determine the accuracy of the Euler rotation angles. In evaluating the HAM, the orientation, location, and magnitude of rotation were compared either to the bone measurements or to the known rotational axis of the testing fixture. Euler rotation angles and the helical axis of motion determined by the measurements taken from the skin-mounted humeral cuff were very similar to those using the measurements from the bone-mounted sensor. The humeral cuff was shown to provide a viable, noninvasive method for determining the Euler rotation angles and helical axis of motion during 3-D humeral movements. The validation makes the humeral cuff a valuable tool for examining the effect of shoulder pathologies on the kinematics of the upper extremity.

Restricted access

Kyoung-Seok Yoo, Hyun-Kyung Kim and Jin-Hoon Park

The present study examined the technical characteristics of sliding performance from push-off until stone release in curling delivery. Five elite performance level curlers (> 7 years experience) and five subelite level curlers (< 3 years experience) were analyzed during the action of delivery of a curling stone. The joint angles, angular velocities, and moments of the body center of mass (COM) were determined based on three-dimensional kinematic data. The plantar pressure data were measured using a validated in-shoe system. The results indicated that the gliding time and horizontal velocity of the mass center of the body during the sliding phase were not significantly different between the elite and subelite groups. However, there were significant differences in the gliding distance and the rate of changes in velocity profiles of body COM between the two groups. The moment of the body COM from its relative position to the ankle of the support limb in the anterior/posterior direction was positive in elite curlers and negative in subelite curlers. In addition, larger ankle dorsiflexion and greater contact area of the sliding foot were observed in elite curlers. These data suggest a superior ability of elite curlers to maintain a regulated movement speed and balance control during the performance of a curling stone delivery.