Search Results

You are looking at 101 - 110 of 331 items for :

Clear All
Restricted access

Benjamin M. Jackson, Ted Polglaze, Brian Dawson, Trish King and Peter Peeling

Global positioning system (GPS) devices are commonly used in elite-level team sports as a way of tracking player movements and quantifying workloads. 1 – 3 The data collected from GPS devices are important to coaches, athletes, and scientists, as they provide details about the movement patterns

Restricted access

Adam Jones, Richard Page, Chris Brogden, Ben Langley and Matt Greig

surfaces, 1 with the task chosen to reflect the common mechanism of injury in soccer. The influence of playing surface on injury risk might, therefore, be specific to injury site and type, in part explaining the equivocal nature of the epidemiology literature. Contemporary developments in GPS

Restricted access

Lee Taylor, Christopher J. Stevens, Heidi R. Thornton, Nick Poulos and Bryna C.R. Chrismas

ecologically valid setting. The experimental aims were therefore to use a phase-change cooling vest within elite WRSS players during an externally valid match-day warm-up. Specifically, the performance (countermovement jump [CMJ]), physical (global positioning system [GPS] metrics), and psychophysiological

Restricted access

Pedro Figueiredo, George P. Nassis and João Brito

perceived exertion (s-RPE). Players also used 10-Hz global positioning system (GPS) pods during training sessions (Viper Pod; STATSports, Newry, Northern Ireland). External load variables included total training time, total distance covered, distance covered per minute, high-speed distance (>14.4 km

Restricted access

Liam Anderson, Graeme L. Close, Ryland Morgans, Catherine Hambly, John Roger Speakman, Barry Drust and James P. Morton

contractions etc) that are not often considered when using global positioning system (GPS) data to make inferences of daily EE. Methods Overview of the Player The player is a 27-year old male professional GK (body mass 85.6 kg, height 191 cm from a headless scan, percentage body fat 11.9%, fat mass 9.8 kg

Restricted access

Jeroen de Bruijn, Henk van der Worp, Mark Korte, Astrid de Vries, Rick Nijland and Michel Brink

Corporation, Annapolis, MD, US). This system consists of a chest strap, a data module, GPS-trackers, and a laptop including Zephyr ™ software. The chest strap has the ability to measure heart rate due to 2 electrocardiogram (ECG) sensors and the GPS trackers can be easily attached to the chest strap using an

Restricted access

Tannath J. Scott, Heidi R. Thornton, Macfarlane T.U. Scott, Ben J. Dascombe and Grant M. Duthie

Advancements in technology have led to the extensive implementation of global positioning systems (GPS) and microtechnology in team sports to quantify movement demands. The ability to more reliably quantify and interpret these demands has led to a greater understanding of the external loads

Restricted access

Heidi R. Thornton, Jace A. Delaney, Grant M. Duthie and Ben J. Dascombe

sessions and matches were quantified using GPS units at a sampling rate of 5 Hz, interpolated to 15 Hz (SPI HPU, GPSports, Canberra, Australia). These were placed in a custom-made pouch in a vest positioned between the scapulae of the upper back. These units are deemed valid and reliable for quantifying

Restricted access

Darcy M. Brown, Dan B. Dwyer, Samuel J. Robertson and Paul B. Gastin

The purpose of this study was to assess the validity of a global positioning system (GPS) tracking system to estimate energy expenditure (EE) during exercise and field-sport locomotor movements. Twenty-seven participants each completed a 90-min exercise session on an outdoor synthetic futsal pitch. During the exercise session, they wore a 5-Hz GPS unit interpolated to 15 Hz and a portable gas analyzer that acted as the criterion measure of EE. The exercise session was composed of alternating 5-minute exercise bouts of randomized walking, jogging, running, or a field-sport circuit (×3) followed by 10 min of recovery. One-way analysis of variance showed significant (P < .01) and very large underestimations between GPS metabolic power– derived EE and oxygen-consumption (VO2) -derived EE for all field-sport circuits (% difference ≈ –44%). No differences in EE were observed for the jog (7.8%) and run (4.8%), whereas very large overestimations were found for the walk (43.0%). The GPS metabolic power EE over the entire 90-min session was significantly lower (P < .01) than the VO2 EE, resulting in a moderate underestimation overall (–19%). The results of this study suggest that a GPS tracking system using the metabolic power model of EE does not accurately estimate EE in field-sport movements or over an exercise session consisting of mixed locomotor activities interspersed with recovery periods; however, is it able to provide a reasonably accurate estimation of EE during continuous jogging and running.

Restricted access

Matt Greig and Philip Nagy

Context:

Epidemiological studies highlight a prevalence of lumbar vertebrae injuries in cricket fast bowlers, with governing bodies implementing rules to reduce exposure. Analysis typically requires complex and laboratory-based biomechanical analyses, lacking ecological validity. Developments in GPS microtechnologies facilitate on-field measures of mechanical intensity, facilitating screening toward prevention and rehabilitation.

Objective:

To examine the efficacy of using GPS-mounted triaxial accelerometers to quantify accumulated body load and to investigate the effect of GPS-unit placement in relation to epidemiological observations.

Design:

Repeated measures, field-based.

Setting:

Regulation cricket pitch.

Participants:

10 male injury-free participants recruited from a cricket academy (18.1 ± 0.6 y).

Intervention:

Each participant was fitted with 2 GPS units placed at the cervicothoracic and lumbar spines to measure triaxial acceleration (100 Hz). Participants were instructed to deliver a 7-over spell of fast bowling, as dictated by governing-body guidelines.

Main Outcome Measures:

Triaxial total accumulated body and the relative uniaxial contributions were calculated for each over.

Results:

There was no significant main effect for overs bowled, in either total load or the triaxial contributions to total load. This finding suggests no cumulative fatigue effect across the 10-over spell. However, there was a significant main effect for GPS-unit location, with the lumbar unit exposed to significantly greater load than the cervicothoracic unit in each of the triaxial planes.

Conclusions:

There was no evidence to suggest that accumulated load significantly increased as a result of spell duration. In this respect the governing-body guidelines for this age group can be considered safe, or potentially even conservative. However, the observation of higher body load at the lumbar spine than at the cervicothoracic spine supports epidemiological observations of injury incidence. GPS microtechnologies might therefore be considered in screening and monitoring of players toward injury prevention and/or during rehabilitation.