Search Results

You are looking at 101 - 110 of 1,124 items for :

Clear All
Open access

Trent Stellingwerff, Ingvill Måkestad Bovim and Jamie Whitfield

 = phosphocreatine; PRO = protein; RFD = rate of force development; suppl. = supplementation; SV = stroke volume; VO 2 max = maximal oxygen consumption. Middle-distance race intensity is extreme, with 800- to 5,000-m races being at ∼95% to 130% of VO 2 max ( Duffield et al., 2005 ), or 75–85% of maximum sprint speed

Restricted access

Twan ten Haaf, Selma van Staveren, Danilo Iannetta, Bart Roelands, Romain Meeusen, Maria F. Piacentini, Carl Foster, Leo Koenderman, Hein A.M. Daanen and Jos J. de Koning

index, 23.5 [2.1] kg/m 2 ; and VO 2max at baseline, 51.8 [6.3] mL/kg/min). Subjects were categorized in performance levels 1 (4%), 2 (57%), 3 (25%), and 4 (14%) according to VO 2max -based athlete classification norms. 10 , 11 Subjects gave written informed consent prior to the first measurements. The

Restricted access

Kim Beals, Katherine A. Perlsweig, John E. Haubenstriker, Mita Lovalekar, Chris P. Beck, Darcie L. Yount, Matthew E. Darnell, Katelyn Allison and Bradley C. Nindl

Participants A total of 10 male SQT students volunteered to participate in laboratory testing and observation during MWCW training (age = 23.3 ± 1.8 years, height = 182.3 ± 6.4 cm, weight = 83.6 ± 4.5 kg, body fat = 12.5% ± 3.4%, VO 2 max = 60.0 ± 6.8 ml·kg −1 ·min −1 , and heart rate (HR) max = 190.4 ± 8

Restricted access

Michelle S.M. Silva, Wladimir Bolani, Cleber R. Alves, Diogo G. Biagi, José R. Lemos Jr, Jeferson L. da Silva, Patrícia A. de Oliveira, Guilherme B. Alves, Edilamar M. de Oliveira, Carlos E. Negrão, José E. Krieger, Rodrigo G. Dias and Alexandre C. Pereira

Aim:

To study the relationship between the ACTN3 R577X polymorphism and oxygen uptake (VO2) before and after exercise training.

Methods:

Police recruits (N = 206, 25 ± 4 y) with RR (n = 75), RX (n = 97), and XX (n = 33) genotypes were selected. After baseline measures, they underwent 18 wk of running endurance training. Peak VO2 was obtained by cardiopulmonary exercise testing.

Results:

Baseline body weight was not different among genotypes. At baseline, XX individuals displayed higher VO2 at anaerobic threshold, respiratory compensation point, and exercise peak than did RR individuals (P < .003). Endurance training significantly increased VO2 at anaerobic threshold, respiratory compensation point, and exercise peak (P < 2 × 10−6), but the differences between XX and RR were no longer observed. Only relative peak VO2 exercise remained higher in XX than in RR genotype (P = .04). In contrast, the increase in relative peak VO2 was greater in RR than in XX individuals (12% vs 6%; P = .02).

Conclusion:

ACTN3 R577X polymorphism is associated with VO2. XX individuals have greater aerobic capacity. Endurance training eliminates differences in peak VO2 between XX and RR individuals. These findings suggest a ceiling-effect phenomenon, and, perhaps, trained individuals may not constitute an adequate population to explain associations between phenotypic variability and gene variations.

Restricted access

Stanley P. Brown, Joel C. Jordan, Linda F. Chitwood, Kim R. Beason, John G. Alvarez and Kendal P. Honea

This study was performed to investigate the relationship between heart rate (HR) as a percentage of peak HR and oxygen uptake (V̇O2) as a percentage of peak V̇O2 in older adults while performing deep water running (DWR). Twenty-three (14 male and 9 female) apparently healthy older adults, age 50 to 70 years, volunteered. Deep water running to V̇O2peak was performed in 3-min stages at leg speeds controlled by a metronome beginning at 60 strides per minute and increasing 12 strides per minute each additional stage. Oxygen uptake and HR were continuously monitored by open-circuit spirometry and radiotelemetry, respectively. Simple linear regression analysis was used to establish the relationship between the physiological variables. The relationship between %V̇O2peak and %HRpeak was statistically significant, with the male (%V̇O2peak = 1.5301 [%HRpeak] − 54.4932 [r = .96, SEE = 6.0%]) and female (%V̇O2peak = 1.5904 [%HRpeak] - 62.3935 [r = .91, SEE = 6.9%]) regression equations being significantly different (p < .05). The regression equations of older adults and those for college-aged males (%VO2peak = 1.4634 [%HRpeak] − 49.619) and females (%V̇O2peak = 1.6649 [%HRpeak] − 67.862) were not significantly different.

Restricted access

Sonja de Groot, Linda J. Valent, Richard Fickert, Babette M. Pluim and Han Houdijk

Purpose:

To determine the relationship between outcomes of the shuttle wheel test (SWT) and peak oxygen uptake (VO2peak) during that test and whether SWT and VO2peak can discriminate between different skill levels of wheelchair tennis players.

Methods:

Fifteen wheelchair tennis players performed an SWT on a tennis court while VO2 was measured continuously. Outcome measures were VO2peak and achieved stage. Relations between outcomes and Dutch wheelchair tennis ranking were calculated with Spearman correlation. Independent t tests were used to test for differences between national and international players.

Results:

Moderate correlations were found between VO2peak and SWT outcome (r = .40–.47). The tennis ranking correlated weakly with VO2peak (r = –.35) and strongly with SWT outcome (r = –.80). A significant difference was found between national and international players for achieved stage (P = .027) and VO2peak (P = .027).

Conclusions:

The SWT outcome only explained a small part of the variance in VO2peak among players, so it cannot be considered a valid test for aerobic capacity. However, SWT outcomes are related to the skill level of the player and give a good indication of the overall peak wheelchair performance.

Restricted access

Zhen-Bo Cao, Nobuyuki Miyatake, Tomoko Aoyama, Mitsuru Higuchi and Izumi Tabata

Background:

The purpose was to develop new maximal oxygen uptake (VO2max) prediction models using a perceptually regulated 3-minute walk test.

Methods:

VO2max was measured with a maximal incremental cycle test in 283 Japanese adults. A 3-minute walk test was conducted at a self-regulated intensity corresponding to ratings of perceived exertion (RPE) 13.

Results:

A 3-minute walk distance (3MWD) was significantly related to VO2max (r = .60, P < .001). Three prediction models were developed by multiple regression to estimate VO2max using data on gender, age, 3MWD, and either BMI [BMI model, multiple correlation coefficients (R) = .78, standard error of estimate (SEE) = 5.26 ml⋅kg-1⋅min-1], waist circumference (WC model, R = .80, SEE = 5.04 ml⋅kg-1⋅min-1), or body fat percentage (%Fat model, R = .84, SEE = 4.57 ml⋅kg-1⋅min-1), suggesting that the %Fat model is the best model [VO2max = 37.501 + 0.463 × Gender (0 = women, 1 = men) – 0.195 × Age – 0.589 × %Fat + 0.053 × 3MWD]. Cross-validation by using the predicted residual sum of squares (PRESS) procedures demonstrated a high level of cross-validity of all prediction models.

Conclusions:

The new VO2max prediction models are reasonably applicable to estimating VO2max in Japanese adults and represent a quick, low-risk, and convenient means for estimating VO2max in the field.

Restricted access

Gregory B. Dwyer and Anthony D. Mahon

Little is known about the responses to graded exercise in athletes with cerebral palsy (CP). This study compared the ventilatory threshold (VT) and peak VO2 among athletes with CP during treadmill and cycle ergometry exercise. Six (4 men, 2 women) track athletes with CP volunteered to participate in the study. Graded exercise tests on a treadmill and cycle ergometer were performed on separate days to assess VT and peak VO2. Paired t tests were used to compare the two exercise modes. The VT, expressed as a percentage of peak VO2, was significantly higher on the cycle ergometer than on the treadmill. The absolute VO2 at the VT was similar during both testing modes, and peak VO2 was significantly higher on the treadmill than on the cycle ergometer. Similar to responses seen in able-bodied individuals, the VO2 at VT was similar during both modes of exercise, while the peak VO2 was 10% lower on the cycle than on the treadmill. Cycle ergometer peak VO2 in these athletes was higher than previous reports of individuals with CP for the cycle ergometer.

Restricted access

Timothy R. McConnell, Jean H. Haas and Nancy C. Conlin

Thirty-eight children (mean age 12.2 ±3.6 yrs) were tested to (a) compare the training heart rate (HR) and oxygen uptake (V̇O2) computed from commonly used exercise prescription methods to the heart rate (HRAT) and V̇O2 (ATge) at the gas exchange anaerobic threshold, (b) compute the range of relative HRs and V̇O2s (% HRmax and % V̇O2max, respectively) at which the ATge occurred, and (c) discuss the implications for prescribing exercise intensity. The ATge occurred at a V̇O2 of 20.9 ml · kg−1 · min−1 and an HR of 129 beats·min−1. The training HR and V̇O2 computed using 70 and 85% HRmax, 70% of the maximal heart rate reserve (HRR), and 57 and 78% V·O2max, were significantly different (p<.05) from their corresponding ATge values. To compute training % HRmax, % V̇O2max, and % HRR values that would not significantly differ from the ATge, then 68% HRmax, 48% V̇O2max, and 41% HRR would need to be used for the current population.

Restricted access

Thomas Rowland, Paul Vanderburgh and Lee Cunningham

Adjustment of VO2max for changes in body size is important in evaluating aerobic fitness in children. It is important, therefore, to understand the normal relationship between changes VO2max and body size during growth. Over the course of 5 years, 20 children (11 boys, 9 girls) underwent annual maximal treadmill testing to determine VO2max. The mean longitudinal allometric scaling exponent for VO2max relative to body mass (M) was 1.10 ± 0.30 in the boys and 0.78 ± 0.28 in the girls (p < .05). Respective cross-sectional values were 0.53 ± 0.08 and 0.65 ± 0.03. VO2max expressed relative to M1.0, M0.75, and M0.67 rose during the 5 years in the boys, but not the girls. Significant gender differences remained when VO2max was related to lean body mass. These findings suggest (a) factors other than body size affect the development of VO2max in children, and (b) gender differences exist in VO2max during childhood which are independent of body composition.