Search Results

You are looking at 101 - 110 of 684 items for :

  • Physical Education and Coaching x
Clear All
Restricted access

Gregory B. Dwyer and Anthony D. Mahon

Little is known about the responses to graded exercise in athletes with cerebral palsy (CP). This study compared the ventilatory threshold (VT) and peak VO2 among athletes with CP during treadmill and cycle ergometry exercise. Six (4 men, 2 women) track athletes with CP volunteered to participate in the study. Graded exercise tests on a treadmill and cycle ergometer were performed on separate days to assess VT and peak VO2. Paired t tests were used to compare the two exercise modes. The VT, expressed as a percentage of peak VO2, was significantly higher on the cycle ergometer than on the treadmill. The absolute VO2 at the VT was similar during both testing modes, and peak VO2 was significantly higher on the treadmill than on the cycle ergometer. Similar to responses seen in able-bodied individuals, the VO2 at VT was similar during both modes of exercise, while the peak VO2 was 10% lower on the cycle than on the treadmill. Cycle ergometer peak VO2 in these athletes was higher than previous reports of individuals with CP for the cycle ergometer.

Restricted access

Thomas J. O’Connor, Rick N. Robertson and Rory A. Cooper

Three-dimensional kinematic variables and their relationship to the physiology of racing wheelchair propulsion were studied. Six male wheelchair athletes performed two trials (medium and maximum speed) of 3 min each. VO2, VO2/kg, VE, and HR were measured. Results showed that at medium speed, wrist velocity on hand contact was significantly correlated with VO2/kg. At maximum speed, elbow velocity during preparatory phase was significantly correlated with VO2. Stepwise regression showed wrist trajectory angle and elbow velocity during preparatory phase were significantly correlated with VO2/kg. Results indicate that kinematic variables recorded prior to and on hand contact with the pushrim are significant variables in developing a more efficient racing wheelchair propulsion technique. Results of this study indicate a need to educate coaches of wheelchair track athletes concerning the best racing wheelchair propulsion technique.

Restricted access

Emma Stevenson, Clyde Williams, Gareth McComb and Christopher Oram

This study examined the effects of the glycemic index (GI) of post-exercise carbohydrate (CHO) intake on endurance capacity the following day. Nine active males participated in 2 trials. On day 1, subjects ran for 90 min at 70% VO2max (R1). Thereafter, they were supplied with either a high GI (HGI) or low GI (LGI) CHO diet which provided 8 g CHO/kg body mass (BM). On day 2, after an overnight fast, subjects ran to exhaustion at 70% VO2max (R2). Time to exhaustion during R2 was longer in the LGI trial (108.9 ± 7.4 min) than in the HGI trial (96.9 ± 4.8 min) (P < 0.05). Fat oxidation rates and free fatty acid concentrations were higher in the LGI trial than the HGI trial (P < 0.05). The results suggest that the increased endurance capacity was largely a consequence of the increased fat oxidation following the LGI recovery diet.

Restricted access

Jennifer Rogers, Robert W. Summers and G. Patrick Lambert

The purpose of this study was to determine if lowering carbohydrate (CHO) concentration in a sport drink influences gastric emptying, intestinal absorption, or performance during cycle ergometry (85 min, 60% VO2peak). Five subjects (25 ± 1 y, 61.5 ± 2.1 mL · kg−1 · min−1 VO2peak) ingested a 3% CHO, 6% CHO, or a water placebo (WP) beverage during exercise. Gastric emptying was determined by repeated double sampling and intestinal absorption by segmental perfusion. Total solute absorption and plasma glucose was greater for 6% CHO; however, neither gastric emptying, intestinal water absorption, or 3-mi time trial performance (7:58 ± 0:33 min, 8:13 ± 0:25 min, and 8:25 ± 0:29 min, respectively, for 6% CHO, 3% CHO, and WP) differed among solutions. These results indicate lowering the CHO concentration of a sport drink from 6% CHO does not enhance gastric emptying, intestinal water absorption, or time trial performance, but reduces CHO and total solute absorption.

Restricted access

Neil M. Johannsen and Rick L. Sharp

The purpose of this study was to investigate differences in substrate oxidation between dextrose (DEX) and unmodified (UAMS) and acid/alcohol-modified (MAMS) cornstarches. Seven endurance-trained men (VO2peak = 59.1 ± 5.4 mL·kg−1·min−1) participated in 2 h of exercise (66.4% ± 3.3% VO2peak) 30 min after ingesting 1 g/kg body weight of the experimental carbohydrate or placebo (PLA). Plasma glucose and insulin were elevated after DEX (P < 0.05) compared with UAMS, MAMS, and PLA. Although MAMS and DEX raised carbohydrate oxidation rate through 90 min of exercise, only MAMS persisted throughout 120 min (P < 0.05 compared with all trials). Exogenous-carbohydrate oxidation rate was higher in DEX than in MAMS and UAMS until 90 min of exercise. Acid/alcohol modification resulted in augmented carbohydrate oxidation with a small, sustained increase in exogenous-carbohydrate oxidation rate. MAMS appears to be metabolizable and available for oxidation during exercise.

Restricted access

Brooke R. Stephens, Andrew S. Cole and Anthony D. Mahon

This study examined substrate use during exercise in early-pubertal (EP), mid-pubertal (MP), late-pubertal (LP), and young-adult (YA) males. Fuel use was calculated using the RER and VO2 response during cycling exercise at 30 to 70% of VO2peak. Significant group by intensity interactions were found for lactate, RER, percent CHO, and fat use, in addition to fat and CHO oxidation rates, which suggest a maturation effect on substrate use during exercise. While significance was not achieved at all intensities, post hoc analyses revealed greater fat use, lower CHO use, and lower lactate concentrations in EP and MP compared to LP or YA. No differences were noted between EP and MP or LP and YA at any intensity, suggesting the development of an adult-like metabolic profile occurs between mid- to late-puberty and is complete by the end of puberty.

Restricted access

Michael Doherty

The purpose of this study was to evaluate the effect of acute caffeine ingestion on the maximal accumulated oxygen deficit (MAOD) and short-term running performance. Nine well-trained males performed a preliminary assessment and. at least 4 days later, a supramaximal run to exhaustion. Their VO2max values were determined, and the MAOD test at an exercise intensity equivalent to 125% VO2max was performed. Caffeine (5 mg ⋅ kg−1) or placebo was administered 1 hr prior to the MAOD in a double-blind, randomized cross-over study. In comparison to the placebo condition, subjects in the caffeine condition developed a significantly greater MAOD and increased their run lime to exhaustion. However, posl-MAOD blood lactate concentration ([HLa]) was not different between trials for caffeine and placebo. Caffeine ingestion can be an effective ergogenic aid for short-term, supramaximal running performance and can increase MAOD. However, these results do not appear to be related to an increased [HLa).

Restricted access

Ian P. Snider, Terry L. Bazzarre, Scott D. Murdoch and Allan Goldfarb

This study examined the effects of the Coenzyme Athletic Performance System (CAPS) on endurance performance to exhaustion. CAPS contains 100 mg coenzyme Q10,500 mg cytochrome C, 100 mg inosine, and 200 IU vitamin E. Eleven highly trained male triathletes were given three daily doses of either CAPS or placebo (dicalcium phosphate) for two 4-week periods using a double-blind crossover design. A 4-week washout period separated the two treatment periods. An exhaustive performance test, consisting of 90 minutes of running on a treadmill (70% VO2max) followed by cycling (70% VO2max) until exhaustion, was conducted after each treatment period. The mean (±SEM) time to exhaustion for the subjects using CAPS (223 ±17 min) was not significantly different (p=0.57) from the placebo trial (215 ±9 min). Blood glucose, lactate, and free fatty acid concentrations at exhaustion did not differ between treatments (p < 0.05). CAPS had no apparent benefit on exercise to exhaustion.

Restricted access

Christopher Barnett, David L. Costill, Mathew D. Vukovich, Kevin J. Cole, Bret H. Goodpaster, Scott W. Trappe and William J. Fink

This study examined the effects of 14 days of L-camitine supplementation on muscle and blood camitine fractions, and muscle and blood lactate concentrations, during high-intensity sprint cycling exercise. Eight subjects performed three experimental trials: control 1 (CON I, Day 0), control I! (CON II, Day 14), and L-camitine (L-CN, Day 28). Each trial consisted of a 4-rain ride at 90% VO2max, followed by a rest period of 20 min, and thee five repeated 1-min rides at 115% VO2max (2 min rest between each). Following CON n, all subjects began dietary supplementation of L-camitine for a period of 14 days (4 g/day). Plasma total acid soluble and free camitine concentrations were significantly higher (p < .05) at all time points following supplementation. L-camitine supplementation had no significant effect on muscle camitine content and thus could not alter lactate accumulation during exercise.

Restricted access

M. Kathleen Ellis and Lynn A. Darby

This study compared balance and peak oxygen consumption (peak VO2) among hearing, congenital nonhearing, and acquired nonhearing female intercollegiate athletes. Twenty-seven subjects completed two measures of peak VO2 and two measures of balance (static and dynamic). Two pieces of exercise equipment requiring different levels of balance were used: the bicycle ergometer (minimal balance) and the bench-step (maximal balance). Significant differences were found for dynamic balance and for peak VO2 for all subject groups. The significant difference remained among the groups for peak VO2 using the bicycle ergometer when dynamic balance was used as a covariate. There was no significant difference for peak VO2 dependent on type of test when dynamic balance was controlled. The results indicated that dynamic balance affected peak VO2 performance on the bench-step, but not on the bicycle ergometer. These findings suggest that if dynamic balance is required for an assessment of peak VO2, balance should be tested in nonhearing populations.