Search Results

You are looking at 101 - 110 of 938 items for :

  • "coordination" x
Clear All
Restricted access

Perrine Brétigny, Ludovic Seifert, David Leroy and Didier Chollet

The aim of this study was to compare the upper-limb kinematics and coordination of the short grip and classic drives in field hockey. Ten elite female players participated in the experiment. The VICON system was used to record the displacement of markers placed on the stick and the players’ joints during five short grip and five classic drives. Kinematic and coordination parameters were analyzed. The ball’s velocity was recorded by a radar device that also served as the drive target. Kinematic differences were noted between the two drive conditions, with shorter duration and smaller overall amplitude in the short grip drive, explained by the shorter lever arm and the specific context in which it is used. No differences were noted for upper-limb coordination. In both types of stick holding, an interlimb dissociation was noted on the left side, whereas the right interlimb coordination was in phase. Moreover, the time lag increased in the disto-proximal direction, suggesting wrist uncocking before impact and the initiation of descent motion by the left shoulder. Mediolateral analysis confirmed these results: coordination of left-right limbs converged at the wrist but dissociated with more proximal joints (elbows and shoulders).

Restricted access

Shinya Fujii and Shingo Oda

The aim of this study is to establish the effects of stick use on rhythmic bimanual coordination in drummers. Eighteen drummers performed a rapid antiphase coordination task using their fingers and handheld drumsticks. We found no significant differences in the speed of tapping between finger and stick-use tapping, while stick-use tapping had a larger peak force and smaller variability in coordination pattern than finger tapping. As a consequence, the quotient of the number of taps divided by the variability of coordination pattern, named the bimanual performance quotient, was higher for stick-use tapping than for finger tapping. A significant correlation was found between years of drumming experience and the bimanual performance quotient for both finger and stick-use tapping, but not between the years of drumming experience and the degree of improvement in the bimanual performance quotient with stick use relative to finger tapping. These results indicate that stick use enhances drummers’ bimanual coordination during rapid alternate tapping, whereas the degree of improvement with stick use does not depend on drumming experience.

Restricted access

Joseph F. Seay, Jeffery M. Haddad, Richard E.A. van Emmerik and Joseph Hamill

Increases in movement variability have previously been observed to be a hallmark property of cooraination changes between coupled oscillators that occur as movement frequency is scaled. Prior research on the walk-run transition in human locomotion has also demonstrated increases in variability around the transition region, supporting predictions of nonequilibrium phase transitions (Diedrich & Warren, 1995). The current study examined the coordinative patterns of both intra- and inter-limb couplings around the walk-run transition using two different temporal manipulations of locomotor velocity as a control parameter in healthy young participants (N = 11). Coordination variability did not increase before the transition. The nature of the change in continuous relative phase variability between gait modes was coupling-specific, and varying the time spent at each velocity did not have an overall effect on gait transition dynamics. Lower extremity inter-limb coordination dynamics were more sensitive to changes in treadmill velocity than intra-limb coordination. The results demonstrate the complexity of segmental coordination change in human locomotion, and question the applicability of dynamical bimanual coordination models to human gait transitions.

Restricted access

Inês Marques-Aleixo, Ana Querido, Pedro Figueiredo, João Paulo Vilas-Boas, Rui Corredeira, Daniel Daly and Ricardo J. Fernandes

This study examined the differences in intracycle velocity variation and arm coordination in front crawl in swimmers with Down syndrome in three breathing conditions. International swimmers with Down syndrome (N = 16) performed 3 × 20 m front crawl at 50 m race speed: without breathing, breathing to the preferred side, and breathing to the nonpreferred side. A two dimensional video movement analysis was performed using the APASystem. Breathing conditions were compared using Repeated Measures ANOVA. Swimming velocity was higher without breathing and intracyclic velocity variation was higher while breathing. Swimmers tended to a catch up arm coordination mode for both breathing conditions and a superposition mode when not breathing. These data reflect arm coordination compromising swimming performance, particularly when comparing with non disabled swimmers in literature. The physical and perhaps cognitive impairment associated with Down syndrome may result in a disadvantage in both propulsion and drag, more evident when breathing.

Restricted access

Joric B. Vandendriessche, Barbara Vandorpe, Manuel J. Coelho-e-Silva, Roel Vaeyens, Matthieu Lenoir, Johan Lefevre and Renaat M. Philippaerts

Discussions of growth and motor performance of children are often set in the context of physical fitness. Although there is a clear theoretical concept or definition of fitness comprising motor coordination, the latter is not systematically considered. This study determined to what extent the variance in motor coordination might be explained by morphological and fitness characteristics. To postulate understanding of this association during childhood, 613 boys aged 7–11 years completed the morphological measurements, the Körperkoordinationstest für Kinder (KTK) and different fitness tests. The results demonstrated a substantial interrelationship among morphology, fitness and motor coordination in elementary school boys. The magnitude of explained variance and the loadings of the canonical correlation between the several constructs are strongly pronounced during childhood indicating that these constructs should be well considered given their contribution to a child’s general development.

Restricted access

Daniel Feeney, Igor Jelaska, Mehmet Uygur and Slobodan Jaric

We examined the effects of unilateral muscle fatigue on the performance and coordination of grip (GF; normal component acting between the hand and object) and load force (LF; tangential component) in bimanual manipulation tasks, as well as the associated lateral differences. Eleven participants performed various symmetric bimanual tasks either without fatigue, or after fatiguing the GF producing muscles of either the nondominant or dominant hand. The GF/LF ratio of the fatigued and nonfatigued hand decreased and increased, respectively, while the neither the effects of fatigue on the task performance and GF-LF coordination, nor the lateral differences were revealed. The lack of the fatigue associated effects on most of the tested variables typically observed from unimanual tasks could be explained by bimanual assimilation. The findings also suggest that in daily life switching to bimanual tasks when one hand becomes fatigued could be beneficial regarding preserving the high level of both the manipulation performance and force coordination.

Restricted access

Nicole Wenderoth and Otmar Bock

Learning of a new bimanual coordination pattern was investigated by practicing rhythmical arm movements with a required relative phase of ϕ = 90°. To quantify the learning process, we determined the mean and the standard deviation of the relative phase, and the switching lime from a well-established coordination pattern to the to-be-leamed pattern. We then calculated for each parameter the time constant of improvement. We found that with practice, all three parameter improved but each following a significantly different time-course. We therefore conclude that the learning of a new bimanual coordination pattern is governed by three separate processes, which can be visualized in a potential landscape of the intrinsic dynamics as distinct topographical features—namely, the location, depth, and steepness of the attractor basin.

Restricted access

Boris I. Prilutsky and Robert J. Gregor

The purpose of this study was to simulate the control of an external force using different strategies of muscle coordination and to compare the predicted patterns of muscle forces with those of electromyographic activity reported in the literature for the same task. We simulated a motor task in which a person sitting on a chair exerts an external force by pushing on the ground (or pulling a strap) in five different directions with two different force magnitudes. The results of this study suggest that during the control of an external force in pushing directions, more force is allocated to muscles with long moment arms and a large physiological cross-sectional area, and the number of simultaneously active muscles is increased. This strategy of muscle coordination corresponds to the strategy of minimizing muscle fatigue, and it is characterized by features of muscle coordination that agree with those reported in experimental studies of walking, running, jumping, and cycling.

Restricted access

Jill Whitall, Larry Forrester and Nancy Getchell

The present study examined the effect of nonspecific task constraints on the multilimb coordination task of preferred-speed crawling. Adult subjects undertook three trials each of the following randomly ordered conditions: forward prone (FP), backward supine (BS), backward prone (BP) and forward supine (FS). Subjects adopted specific coordinative solutions consistent with task-related function rather than anatomical specification. The patterns were relatively stable, with BP being least stable. Across conditions, subjects changed their velocity in a predictable order that corresponded to the various constraints. These velocity changes were largely attributable to stride length adjustments and not limb frequency. Within a condition, neither velocity nor anthropometrics appeared to influence the coordinative solution. Overall, rather large differences were found in coordinative solutions, possibly owing to the nature of the tasks and/or individual searching strategies. The results were interpretable within a dynamic approach to coordination and support the idea that coordination is functionally rather than anatomically determined.

Restricted access

Harjo J. de Poel, C.E. Peper and Peter J. Beek

Based on indications that hand dominance is characterized by asymmetrical interlimb coupling strength (with the dominant hand exerting stronger influences on the nondominant hand than vice versa), intentional switches between rhythmic bimanual coordination patterns were predicted to be mediated primarily by phase adaptations in the movements of the nondominant hand. This hypothesis was supported for both right-handed and left-handed participants who performed voluntary switches from in-phase to antiphase coordination or vice versa, at four different frequencies. In accordance with previous indications that handedness is expressed less consistently in left-handers, the asymmetry between the hands was less pronounced in left-handed than in right-handed participants. The asymmetry was smaller for switches from in-phase to antiphase coordination (i.e., in the direction opposite to spontaneous transitions) than for switches in the reverse direction, suggesting that (the expression of) the handedness-related asymmetry in coupling strength was weakened by intentional processes associated with these switches.