Search Results

You are looking at 101 - 110 of 240 items for :

  • "dual-energy X-ray absorptiometry" x
Clear All
Restricted access

Lenka Humenikova Shriver, Nancy Mulhollen Betts and Mark Edward Payton

Background:

Many wrestlers engage in chronic dieting and rapid “weight cutting” throughout the year to compete in a category below their natural weight. Such weightmanagement practices have a negative influence on their health and nutritional status, so the National Wrestling Coaches Association implemented a new weight-management program for high school wrestlers in 2006.

Purpose:

The purpose of this study was to determine whether seasonal changes in weight, body fat, and eating attitudes occur among high school wrestlers after the implementation of the new weight-management rule.

Methods:

Fifteen high school wrestlers participated in the study. Their weight, body composition, and eating attitudes were measured preseason, in-season, and off-season. Body fat was assessed using dual-energy X-ray absorptiometry. Attitudes toward dieting, food, and body weight were assessed using the Eating Attitude Test (EAT).

Results:

No significant changes in body fat were detected from preseason to off-season. Weight increased from preseason to in-season (p < .05) and off-season (p < .05). Although the EAT score did not change significantly from preseason to offseason, 60% reported “thinking about burning up calories when exercising” during preseason, and only 40% felt that way during the season (p < .05) and 47% during off-season (p < .05).

Conclusions:

The wrestlers experienced a significant weight gain from preseason to off-season with no significant changes in body fat. Their eating attitudes did not change significantly from preseason to off-season in this study, but further research using a large sample of high school wrestlers is warranted to confirm these findings.

Restricted access

James P. Veale, Alan J. Pearce, David Buttifant and John S. Carlson

Purpose:

Body structure and physical development must be addressed when preparing junior athletes for their first season in a senior competition. The aim of this preliminary study was to measure the extent of the assumption that final year junior Australian Football (AF) athletes are at a physical mismatch to their senior counterparts.

Methods:

Twenty-one male participants (17.71 ± 0.27 y) were recruited from one state based elite junior AF competition and forty-one male participants (22.80 ± 4.24 y) were recruited from one club competing in the senior elite Australian Football League (AFL), who were subsequently divided into two groups; professional rookies aged 18-20 y (19.44 ± 0.70 y; n = 18) and professional seniors aged 21+ y (25.43 ± 3.98 y; n = 23). Dual energy X-ray absorptiometry (DEXA) scans of all participants were completed.

Results:

Despite being an average 6.0% and 6.1% lighter in total weight and lean mass respectively, no significant difference was found between the elite junior athletes and their professional AFL rookie counterparts. However, significant differences were demonstrated in comparison with the professional AFL senior athletes (P < .01). Both professional AFL groups demonstrated greater than 0.3 kg total bone mineral content (BMC) than the elite junior athletes (P < .01) and significantly greater segmental BMC and bone mineral density (BMD) results (P < .05).

Conclusion:

While the results identify the differences in body composition of the elite junior athletes, development in a linear fashion is noted, providing useful information for the creation of age appropriate expectations and training programs.

Restricted access

Jenna E. Heller, Joi J. Thomas, Bruce W. Hollis and D. Enette Larson-Meyer

Excess body fat or obesity is known to increase risk of poor vitamin D status in nonathletes but it is not known if this is the case in athletes. Furthermore, the reason for this association is not understood, but is thought to be due to either sequestration of the fat-soluble vitamin within adipose tissue or the effect of volume dilution related to obese individuals’ larger body size. Forty two US college athletes (24 men 18 women, 20.7 ± 1.6 years, 85.0 ± 28.7 kg, BMI = 25.7 ± 6.1 kg/m2) provided blood samples during the fall and underwent measurement of body composition via dual energy X-ray absorptiometry. Serum samples were evaluated for 25-hydroxyvitamin D (25(OH)D) concentration to assess vitamin D status using Diasorin 25(OH)D radioiodine assay. Serum 25(OH)D concentration was negatively associated with height (r = -0.45), total body mass (r = -0.57), BMI (r = -0.57), body fat percentage (r = -0.45), fat mass (r = -0.60) and fat-free mass (r = -0.51) (p < .05). These associations did not change after controlling for sex. In a linear regression mixed model, fat mass (coefficient -0.47, p = .01), but not fat-free mass (coefficient -0.18, p = .32) significantly predicted vitamin D status and explained approximately 36% of the variation in serum 25(OH)D concentration. These results suggest that athletes with a large body size and/or excess adiposity may be at higher risk for vitamin D insufficiency and deficiency. In addition, the significant association between serum 25(OH)D concentration and fat mass in the mixed model, which remained after controlling for sex, is in support of vitamin D sequestration rather than volume dilution as an explanation for such association.

Restricted access

Kathryn L. Beck, Sarah Mitchell, Andrew Foskett, Cathryn A Conlon and Pamela R. Von Hurst

Ballet dancing is a multifaceted activity requiring muscular power, strength, endurance, flexibility, and agility; necessitating demanding training schedules. Furthermore dancers may be under aesthetic pressure to maintain a lean physique, and adolescent dancers require extra nutrients for growth and development. This cross-sectional study investigated the nutritional status of 47 female adolescent ballet dancers (13–18 years) living in Auckland, New Zealand. Participants who danced at least 1 hr per day 5 days per week completed a 4-day estimated food record, anthropometric measurements (Dual-energy X-ray Absorptiometry) and hematological analysis (iron and vitamin D). Mean BMI was 19.7 ± 2.4kg/m2 and percentage body fat, 23.5 ± 4.1%. The majority (89.4%) of dancers had a healthy weight (5th-85th percentile) using BMI-for-age growth charts. Food records showed a mean energy intake of 8097.3 ± 2155.6kJ/day (48.9% carbohydrate, 16.9% protein, 33.8% fat, 14.0% saturated fat). Mean carbohydrate and protein intakes were 4.8 ± 1.4 and 1.6 ± 0.5g/kg/day respectively. Over half (54.8%) of dancers consumed less than 5g carbohydrate/kg/day, and 10 (23.8%) less than 1.2 g protein/kg/day. Over 60% consumed less than the estimated average requirement for calcium, folate, magnesium and selenium. Thirteen (28.3%) dancers had suboptimal iron status (serum ferritin (SF) <20μg/L). Of these, four had iron deficiency (SF < 12μg/L, hemoglobin (Hb) ≥ 120g/L) and one iron deficiency anemia (SF < 12μg/L, Hb < 120g/L). Mean serum 25-hydroxy vitamin D was 75.1 ± 18.6nmol/L, 41 (91.1%) had concentrations above 50nmol/L. Female adolescent ballet dancers are at risk for iron deficiency, and possibly inadequate nutrient intakes.

Restricted access

Joseph M. Kindler, Hannah L. Ross, Emma M. Laing, Christopher M. Modlesky, Norman K. Pollock, Clifton A. Baile and Richard D. Lewis

Assessment of physical activity in clinical bone studies is essential. Two bone-specific physical activity scoring methods, the Bone Loading History Questionnaire (BLHQ) and Bone-Specific Physical Activity Questionnaire (BPAQ), have shown correlations with bone density and geometry, but not architecture. The purpose of this study was to determine relationships between physical activity scoring methods and bone architecture in non-Hispanic white adolescent females (N = 24; 18-19 years of age). Bone loading scores (BLHQ [hip and spine] and past BPAQ) and energy expenditure (7-day physical activity recall) were determined from respective questionnaires. Estimates of trabecular and cortical bone architecture at the nondominant radius and tibia were assessed via magnetic resonance imaging. Total body and regional areal bone mineral density (aBMD), as well as total body fat mass and fat-free soft tissue (FFST) mass were assessed via dual energy X-ray absorptiometry. Pearson’s correlations and partial correlations adjusting for height, total body fat mass, and FFST were performed. Hip BLHQ scores were correlated with midtibia cortical volume (r = .43; p = .03). Adjusted hip and spine BLHQ scores were correlated with all midtibia cortical measures (r = .50-0.58; p < .05) and distal radius apparent trabecular number (r = .46-0.53; p < .05). BPAQ scores were correlated with all midtibia cortical (r = .41-0.51; p < .05) and most aBMD (r = .47-0.53; p < .05) measures. Energy expenditure was inversely associated with femoral neck aBMD only after statistical adjustment (r = .49, p < .05). These data show that greater load-specific physical activity scores, but not energy expenditure, are indicative of greater midtibia cortical bone quality, thus supporting the utility of these instruments in musculoskeletal research.

Restricted access

John Petrizzo, Frederick J. DiMenna, Kimberly Martins, John Wygand and Robert M. Otto

To achieve the criterion appearance before competing in a physique competition, athletes undergo preparatory regimens involving high-volume intense resistance and aerobic exercise with hypocaloric energy intake. As the popularity of “drug-free” competition increases, more athletes are facing this challenge without the recuperative advantage provided by performance-enhancing drugs. Consequently, the likelihood of loss of lean body and/or bone mass is increased. The purpose of this investigation was to monitor changes in body composition for a 29-year-old self-proclaimed drug-free female figure competitor during a 32-week preparatory regimen comprising high-volume resistance and aerobic exercise with hypocaloric energy intake. We used dual-energy x-ray absorptiometry (DXA) to evaluate regional fat and bone mineral density. During the initial 22 weeks, the subject reduced energy intake and engaged in resistance (4–5 sessions/week) and aerobic (3 sessions/week) training. During the final 10 weeks, the subject increased exercise frequency to 6 (resistance) and 4 (aerobic) sessions/week while ingesting 1130–1380 kcal/day. During this 10-week period, she consumed a high quantity of protein (~55% of energy intake) and nutritional supplements. During the 32 weeks, body mass and fat mass decreased by 12% and 55%, respectively. Conversely, lean body mass increased by 1.5%, an amount that exceeded the coefficient of variation associated with DXA-derived measurement. Total bone mineral density was unchanged throughout. In summary, in preparation for a figure competition, a self-proclaimed drug-free female achieved the low body-fat percentage required for success in competition without losing lean mass or bone density by following a 32-week preparatory exercise and nutritional regimen.

Restricted access

Brett S. Nickerson, Michael R. Esco, Phillip A. Bishop, Brian M. Kliszczewicz, Kyung-Shin Park and Henry N. Williford

The purpose of this study was twofold: 1) compare body volume (BV) estimated from dual energy X-ray absorptiometry (DXA) to BV from a criterion underwater weighing (UWW) with simultaneous residual lung volume (RLV), and 2) compare four-compartment (4C) model body fat percentage (BF%) values when deriving BV via DXA (4CDXA) and UWW (4CUWW) in physically active men and women. One hundred twenty-two adults (62 men and 60 women) who self-reported physical activity levels of at least 1,000 MET·min·wk-1 volunteered to participate (age = 22 ± 5 years). DXA BV was determined with the recent equation from Smith-Ryan et al. while criterion BV was determined from UWW with simultaneous RLV. The mean BV values for DXA were not significant compared with UWW in women (p = .80; constant error [CE] = 0.0L), but were significantly higher in the entire sample and men (both p < .05; CE = 0.3 and 0.7L, respectively). The mean BF% values for 4CDXA were not significant for women (p = .56; CE = –0.3%), but were significantly higher in the entire sample and men (both p < .05; CE = 0.9 and 2.0%, respectively). The standard error of estimate (SEE) ranged from 0.6–1.2L and 3.9–4.2% for BV and BF%, respectively, while the 95% limits of agreement (LOA) ranged from ±1.8–2.5L for BV and ±7.9–8.2% for BF%. 4CDXA can be used for determining group mean BF% in physically active men and women. However, due to the SEEs and 95% LOAs, the current study recommends using UWW with simultaneous RLV for BV in a criterion 4C model when high individual accuracy is desired.

Restricted access

Laurel Wentz, Pei-Yang Liu, Jasminka Z. Ilich and Emily M. Haymes

Purpose:

To compare female runners with and without a history of stress fractures to determine possible predictors of such fractures.

Methods:

27 female runners (age 18–40 yr) who had had at least 1 stress fracture were matched to a control sample of 32 female runners without a history of stress fractures. Bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry (iDXA). Subjects answered questionnaires on stress-fracture history, training, menstrual status, and diet.

Results:

No significant differences were found in menstrual characteristics, diet and dairy intake, or bone measurements. Weekly servings of milk during middle school significantly predicted BMD at the femur (p = .010), femoral neck (p = .002), Ward’s triangle (p = .014), and femoral shaft (p = .005). Number of menstrual cycles in the previous year predicted femoral-neck BMD (p = .004). Caffeine intake was negatively associated with BMD of the femur (p = .010), femoral neck (p = .003), trochanter (p = .038), and femoral shaft (p = .035). Weekly hours of training were negatively associated with total-body BMD (p = .021), total-body bone mineral content (p = .028), and lumbar-spine BMD (p = .011). Predictors for stress fractures included the number of years running, predominantly running on hard ground, irregular menstrual history, low total-body BMD, and low current dietary calcium intake when controlling for body-mass index (Nagelkerke R 2 = .364).

Conclusions:

Servings of milk during middle-school years were positively correlated with hip BMD, although current calcium intake, low BMD, irregular menstrual history, hard training surface, and long history of training duration were the most important predictors of stress fractures.

Restricted access

Kate Lambourne, Richard Washburn, Jaehoon Lee, Jessica L. Betts, David Thomas, Bryan Smith, Cheryl Gibson, Debra Kay Sullivan and Joseph Donnelly

Fluid milk consumed in conjunction with resistance training (RT) provides additional protein and calcium, which may enhance the effect of RT on body composition. However, the literature on this topic is inconsistent with limited data in adolescents. Therefore, we examined the effects of a supervised RT program (6 mo, 3 d/wk, 7 exercises, 40–85% 1-repetition maximum) with daily milk supplementation (24 oz/day, one 16-oz dose immediately post-RT) on weight, fat mass (FM), and fat-free mass (FFM) assessed via dual-energy X-ray absorptiometry (baseline, 3 mo, 6 mo) in a sample of middle-school students who were randomly assigned to 1 of 3 supplement groups: milk, isocaloric carbohydrate (100% fruit juice), or water (control). Thirty-nine boys and 69 girls (mean age = 13.6 yr, mean BMI percentile = 85th) completed the study: milk n = 36, juice n = 34, water n = 38. The results showed no significant differences between groups for change in body weight (milk = 3.4 ± 3.7 kg, juice = 4.2 ± 3.1 kg, water = 2.3 ± 2.9 kg), FM (milk = 1.1 ± 2.8 kg, juice = 1.6 ± 2.5 kg, water = 0.4 ± 3.6 kg), or FFM (milk = 2.2 ± 1.9 kg, juice = 2.7 ± 1.9 kg, water = 1.7 ± 2.9 kg) over 6 mo. FFM accounted for a high proportion of the increased weight (milk = 62%, juice = 64%, water = 74%). These results from a sample of predominantly overweight adolescents do not support the hypothesis that RT with milk supplementation enhances changes in body composition compared with RT alone.

Restricted access

Whitney R.D. Duff, Philip D. Chilibeck, Julianne J. Rooke, Mojtaba Kaviani, Joel R. Krentz and Deborah M. Haines

Bovine colostrum is the first milk secreted by cows after parturition and has high levels of protein, immunoglobulins, and various growth factors. We determined the effects of 8 weeks of bovine colostrum supplementation versus whey protein during resistance training in older adults. Males (N = 15, 59.1 ± 5.4 y) and females (N = 25, 59.0 ± 6.7 y) randomly received (double-blind) 60g/d of colostrum or whey protein complex (containing 38g protein) while participating in a resistance training program (12 exercises, 3 sets of 8–12 reps, 3 days/week). Strength (bench press and leg press 1-RM), body composition (by dual energy x-ray absorptiometry), muscle thickness of the biceps and quadriceps (by ultrasound), cognitive function (by questionnaire), plasma insulin-like growth factor-1 (IGF-1) and C-reactive protein (CRP, as a marker of inflammation), and urinary N-telopeptides (Ntx, a marker of bone resorption) were determined before and after the intervention. Participants on colostrum increased leg press strength (24 ± 29 kg; p < .01) to a greater extent than participants on whey protein (8 ± 16 kg) and had a greater reduction in Ntx compared with participants on whey protein (–15 ± 40% vs. 10 ± 42%; p < .05). Bench press strength, muscle thickness, lean tissue mass, bone mineral content, and cognitive scores increased over time (p < .05) with no difference between groups. There were no changes in IGF-1 or CRP. Colostrum supplementation during resistance training was beneficial for increasing leg press strength and reducing bone resorption in older adults. Both colostrum and whey protein groups improved upper body strength, muscle thickness, lean tissue mass, and cognitive function.